These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33530063)

  • 1. Helping restricted Boltzmann machines with quantum-state representation by restoring symmetry.
    Nomura Y
    J Phys Condens Matter; 2021 Apr; 33(17):. PubMed ID: 33530063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetries and Many-Body Excitations with Neural-Network Quantum States.
    Choo K; Carleo G; Regnault N; Neupert T
    Phys Rev Lett; 2018 Oct; 121(16):167204. PubMed ID: 30387658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning a compass spin model with neural network quantum states.
    Zou E; Long E; Zhao E
    J Phys Condens Matter; 2022 Jan; 34(12):. PubMed ID: 34915457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines.
    Pilati S; Inack EM; Pieri P
    Phys Rev E; 2019 Oct; 100(4-1):043301. PubMed ID: 31770982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the Lowest-Energy States for the Model Distribution of Trained Restricted Boltzmann Machines Using a 1000 Qubit D-Wave 2X Quantum Computer.
    Koshka Y; Perera D; Hall S; Novotny MA
    Neural Comput; 2017 Jul; 29(7):1815-1837. PubMed ID: 28562219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restricted Boltzmann Machines for Quantum States with Non-Abelian or Anyonic Symmetries.
    Vieijra T; Casert C; Nys J; De Neve W; Haegeman J; Ryckebusch J; Verstraete F
    Phys Rev Lett; 2020 Mar; 124(9):097201. PubMed ID: 32202867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural-Network Quantum States for Spin-1 Systems: Spin-Basis and Parameterization Effects on Compactness of Representations.
    Pei MY; Clark SR
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Neural Networks Applied as Molecular Wave Function Solvers.
    Yang PJ; Sugiyama M; Tsuda K; Yanai T
    J Chem Theory Comput; 2020 Jun; 16(6):3513-3529. PubMed ID: 32320233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the Liouvillian Gap with Artificial Neural Networks.
    Yuan D; Wang HR; Wang Z; Deng DL
    Phys Rev Lett; 2021 Apr; 126(16):160401. PubMed ID: 33961454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing exact representations of quantum many-body systems with deep neural networks.
    Carleo G; Nomura Y; Imada M
    Nat Commun; 2018 Dec; 9(1):5322. PubMed ID: 30552316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural-Network Approach to Dissipative Quantum Many-Body Dynamics.
    Hartmann MJ; Carleo G
    Phys Rev Lett; 2019 Jun; 122(25):250502. PubMed ID: 31347862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating disordered quantum Ising chains via dense and sparse restricted Boltzmann machines.
    Pilati S; Pieri P
    Phys Rev E; 2020 Jun; 101(6-1):063308. PubMed ID: 32688495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact representations of many-body interactions with restricted-Boltzmann-machine neural networks.
    Rrapaj E; Roggero A
    Phys Rev E; 2021 Jan; 103(1-1):013302. PubMed ID: 33601535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purifying Deep Boltzmann Machines for Thermal Quantum States.
    Nomura Y; Yoshioka N; Nori F
    Phys Rev Lett; 2021 Aug; 127(6):060601. PubMed ID: 34420335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expected energy-based restricted Boltzmann machine for classification.
    Elfwing S; Uchibe E; Doya K
    Neural Netw; 2015 Apr; 64():29-38. PubMed ID: 25318375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving the quantum many-body problem with artificial neural networks.
    Carleo G; Troyer M
    Science; 2017 Feb; 355(6325):602-606. PubMed ID: 28183973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variational Monte Carlo Calculations of A≤4 Nuclei with an Artificial Neural-Network Correlator Ansatz.
    Adams C; Carleo G; Lovato A; Rocco N
    Phys Rev Lett; 2021 Jul; 127(2):022502. PubMed ID: 34296893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supersymmetric quantum mechanics, excited state energies and wave functions, and the Rayleigh-Ritz variational principle: a proof of principle study.
    Kouri DJ; Markovich T; Maxwell N; Bittner ER
    J Phys Chem A; 2009 Dec; 113(52):15257-64. PubMed ID: 19863127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient representation of quantum many-body states with deep neural networks.
    Gao X; Duan LM
    Nat Commun; 2017 Sep; 8(1):662. PubMed ID: 28939812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.