These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 33530064)
1. High-density mapping of primate digit representations with a 1152-channel Kaiju T; Inoue M; Hirata M; Suzuki T J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33530064 [No Abstract] [Full Text] [Related]
2. Electrocorticogram (ECoG) Is Highly Informative in Primate Visual Cortex. Kanth ST; Ray S J Neurosci; 2020 Mar; 40(12):2430-2444. PubMed ID: 32066581 [TBL] [Abstract][Full Text] [Related]
3. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays. Kaiju T; Doi K; Yokota M; Watanabe K; Inoue M; Ando H; Takahashi K; Yoshida F; Hirata M; Suzuki T Front Neural Circuits; 2017; 11():20. PubMed ID: 28442997 [TBL] [Abstract][Full Text] [Related]
4. Multiplexed Surface Electrode Arrays Based on Metal Oxide Thin-Film Electronics for High-Resolution Cortical Mapping. Londoño-Ramírez H; Huang X; Cools J; Chrzanowska A; Brunner C; Ballini M; Hoffman L; Steudel S; Rolin C; Mora Lopez C; Genoe J; Haesler S Adv Sci (Weinh); 2024 Mar; 11(10):e2308507. PubMed ID: 38145348 [TBL] [Abstract][Full Text] [Related]
5. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries. Wang X; Gkogkidis CA; Iljina O; Fiederer LDJ; Henle C; Mader I; Kaminsky J; Stieglitz T; Gierthmuehlen M; Ball T J Neural Eng; 2017 Oct; 14(5):056004. PubMed ID: 28597847 [TBL] [Abstract][Full Text] [Related]
6. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
7. Super multi-channel recording systems with UWB wireless transmitter for BMI. Suzuki T; Ando H; Yoshida T; Sawahata H; Kawasaki K; Hasegawa I; Matsushita K; Hirata M; Yoshimine T; Takizawa K Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5208-11. PubMed ID: 25571167 [TBL] [Abstract][Full Text] [Related]
8. Mapping of primary somatosensory cortex of the hand area using a high-density electrocorticography grid for closed-loop brain computer interface. Kramer DR; Lee MB; Barbaro MF; Gogia AS; Peng T; Liu CY; Kellis S; Lee B J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32131064 [No Abstract] [Full Text] [Related]
9. A minimally invasive flexible electrode array for simultaneous recording of ECoG signals from multiple brain regions. Jeong UJ; Lee J; Chou N; Kim K; Shin H; Chae U; Yu HY; Cho IJ Lab Chip; 2021 Jun; 21(12):2383-2397. PubMed ID: 33955442 [TBL] [Abstract][Full Text] [Related]
10. A soft and stretchable bilayer electrode array with independent functional layers for the next generation of brain machine interfaces. Graudejus O; Barton C; Ponce Wong RD; Rowan CC; Oswalt D; Greger B J Neural Eng; 2020 Oct; 17(5):056023. PubMed ID: 33052886 [TBL] [Abstract][Full Text] [Related]
11. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease. Swann NC; de Hemptinne C; Miocinovic S; Qasim S; Ostrem JL; Galifianakis NB; Luciano MS; Wang SS; Ziman N; Taylor R; Starr PA J Neurosurg; 2018 Feb; 128(2):605-616. PubMed ID: 28409730 [TBL] [Abstract][Full Text] [Related]
12. Technical considerations for generating somatosensation via cortical stimulation in a closed-loop sensory/motor brain-computer interface system in humans. Kramer DR; Kellis S; Barbaro M; Salas MA; Nune G; Liu CY; Andersen RA; Lee B J Clin Neurosci; 2019 May; 63():116-121. PubMed ID: 30711286 [TBL] [Abstract][Full Text] [Related]
13. Chronic subdural electrocorticography in nonhuman primates by an implantable wireless device for brain-machine interfaces. Yan T; Suzuki K; Kameda S; Maeda M; Mihara T; Hirata M Front Neurosci; 2023; 17():1260675. PubMed ID: 37841689 [TBL] [Abstract][Full Text] [Related]
14. A novel micro-ECoG recording method for recording multisensory neural activity from the parietal to temporal cortices in mice. Setogawa S; Kanda R; Tada S; Hikima T; Saitoh Y; Ishikawa M; Nakada S; Seki F; Hikishima K; Matsumoto H; Mizuseki K; Fukayama O; Osanai M; Sekiguchi H; Ohkawa N Mol Brain; 2023 May; 16(1):38. PubMed ID: 37138338 [TBL] [Abstract][Full Text] [Related]
15. Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus. Muller L; Felix S; Shah KG; Kye Lee ; Pannu S; Chang EF Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1528-1531. PubMed ID: 28268617 [TBL] [Abstract][Full Text] [Related]
16. Decoding unconstrained arm movements in primates using high-density electrocorticography signals for brain-machine interface use. Hu K; Jamali M; Moses ZB; Ortega CA; Friedman GN; Xu W; Williams ZM Sci Rep; 2018 Jul; 8(1):10583. PubMed ID: 30002452 [TBL] [Abstract][Full Text] [Related]
18. A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface. Romanelli P; Piangerelli M; Ratel D; Gaude C; Costecalde T; Puttilli C; Picciafuoco M; Benabid A; Torres N J Neurosurg; 2019 Apr; 130(4):1166-1179. PubMed ID: 29749917 [TBL] [Abstract][Full Text] [Related]
19. A Novel µECoG Electrode Interface for Comparison of Local and Common Averaged Referenced Signals. Williams AJ; Trumpis M; Bent B; Chiang CH; Viventi J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5057-5060. PubMed ID: 30441477 [TBL] [Abstract][Full Text] [Related]