BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33530310)

  • 1. A New Perspective on the Origin of DNA Double-Strand Breaks and Its Implications for Ageing.
    Tripathy BK; Pal K; Shabrish S; Mittra I
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33530310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Illegitimate and Repeated Genomic Integration of Cell-Free Chromatin in the Aetiology of Somatic Mosaicism, Ageing, Chronic Diseases and Cancer.
    Raghuram GV; Chaudhary S; Johari S; Mittra I
    Genes (Basel); 2019 May; 10(6):. PubMed ID: 31142004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-free chromatin particles released from dying host cells are global instigators of endotoxin sepsis in mice.
    Mittra I; Pal K; Pancholi N; Tidke P; Siddiqui S; Rane B; D'souza J; Shaikh A; Parab S; Shinde S; Jadhav V; Shende S; Raghuram GV
    PLoS One; 2020; 15(3):e0229017. PubMed ID: 32130239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytokine Storm as a Cellular Response to dsDNA Breaks: A New Proposal.
    Shabrish S; Mittra I
    Front Immunol; 2021; 12():622738. PubMed ID: 33597956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is inflammation a direct response to dsDNA breaks?
    Chaudhary S; Raghuram GV; Mittra I
    Mutat Res; 2018 Mar; 808():48-52. PubMed ID: 29518635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-free chromatin: A newly described mediator of systemic inflammation.
    Chaudhary S; Mittra I
    J Biosci; 2019 Jun; 44(2):. PubMed ID: 31180045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation.
    Frankenberg-Schwager M; Gebauer A; Koppe C; Wolf H; Pralle E; Frankenberg D
    Radiat Res; 2009 Mar; 171(3):265-73. PubMed ID: 19267553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells.
    Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D
    Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of chemotherapy toxicity by agents that neutralize or degrade cell-free chromatin.
    Mittra I; Pal K; Pancholi N; Shaikh A; Rane B; Tidke P; Kirolikar S; Khare NK; Agrawal K; Nagare H; Nair NK
    Ann Oncol; 2017 Sep; 28(9):2119-2127. PubMed ID: 28911066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.
    Moscariello M; Wieloch R; Kurosawa A; Li F; Adachi N; Mladenov E; Iliakis G
    DNA Repair (Amst); 2015 Jul; 31():29-40. PubMed ID: 25973742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chromatin decondensation on alternative NHEJ.
    Moscariello M; Iliakis G
    DNA Repair (Amst); 2013 Nov; 12(11):972-81. PubMed ID: 24051048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How cells ensure correct repair of DNA double-strand breaks.
    Her J; Bunting SF
    J Biol Chem; 2018 Jul; 293(27):10502-10511. PubMed ID: 29414795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of radiation-induced bystander effects by agents that inactivate cell-free chromatin released from irradiated dying cells.
    Kirolikar S; Prasannan P; Raghuram GV; Pancholi N; Saha T; Tidke P; Chaudhari P; Shaikh A; Rane B; Pandey R; Wani H; Khare NK; Siddiqui S; D'souza J; Prasad R; Shinde S; Parab S; Nair NK; Pal K; Mittra I
    Cell Death Dis; 2018 Nov; 9(12):1142. PubMed ID: 30442925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells.
    Honma M; Sakuraba M; Koizumi T; Takashima Y; Sakamoto H; Hayashi M
    DNA Repair (Amst); 2007 Jun; 6(6):781-8. PubMed ID: 17296333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-homologous DNA end joining and alternative pathways to double-strand break repair.
    Chang HHY; Pannunzio NR; Adachi N; Lieber MR
    Nat Rev Mol Cell Biol; 2017 Aug; 18(8):495-506. PubMed ID: 28512351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonhomologous DNA end-joining for repair of DNA double-strand breaks.
    Pannunzio NR; Watanabe G; Lieber MR
    J Biol Chem; 2018 Jul; 293(27):10512-10523. PubMed ID: 29247009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways.
    Mladenov E; Iliakis G
    Mutat Res; 2011 Jun; 711(1-2):61-72. PubMed ID: 21329706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks.
    Shibata A; Jeggo PA
    DNA Repair (Amst); 2020 Sep; 93():102915. PubMed ID: 33087281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The DNA damage response at dysfunctional telomeres, and at interstitial and subtelomeric DNA double-strand breaks.
    Muraki K; Murnane JP
    Genes Genet Syst; 2018 Jan; 92(3):135-152. PubMed ID: 29162774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.