These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33530856)

  • 1. Experimental evaluation of the viscoelasticity of porcine vitreous.
    Aboulatta A; Abass A; Makarem A; Eliasy A; Zhou D; Chen D; Liu X; Elsheikh A
    J R Soc Interface; 2021 Feb; 18(175):20200849. PubMed ID: 33530856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach.
    Huang CC; Chen PY; Shih CC
    Med Phys; 2013 Apr; 40(4):042901. PubMed ID: 23556923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic shear properties of the fresh porcine lens.
    Schachar RA; Chan RW; Fu M
    Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape change of the vitreous chamber influences retinal detachment and reattachment processes: is mechanical stress during eye rotations a factor?
    Meskauskas J; Repetto R; Siggers JH
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6271-81. PubMed ID: 22899755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental model of vitreous motion induced by eye rotations.
    Bonfiglio A; Lagazzo A; Repetto R; Stocchino A
    Eye Vis (Lond); 2015; 2():10. PubMed ID: 26613091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correspondence: Spatial variations of viscoelastic properties of porcine vitreous humors.
    Yoon S; Aglyamov S; Karpiouk A; Emelianov S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2453-60. PubMed ID: 24158299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflation experiments and inverse finite element modelling of posterior human sclera.
    Geraghty B; Abass A; Eliasy A; Jones SW; Rama P; Kassem W; Akhtar R; Elsheikh A
    J Biomech; 2020 Jan; 98():109438. PubMed ID: 31679759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cut rates on fluidic behavior of chopped vitreous.
    Sharif-Kashani P; Nishida K; Pirouz Kavehpour H; Schwartz SD; Hubschman JP
    Retina; 2013 Jan; 33(1):166-9. PubMed ID: 22914683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement.
    Abouali O; Modareszadeh A; Ghaffariyeh A; Tu J
    Med Eng Phys; 2012 Jul; 34(6):681-92. PubMed ID: 22014588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of freezing and thawing on the biomechanical characteristics of porcine ocular tissues.
    Abass A; Eliasy A; Geraghty B; Elabd M; Hassan A; Elsheikh A
    J Biomech; 2019 Apr; 87():93-99. PubMed ID: 30876736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness.
    Whitford C; Joda A; Jones S; Bao F; Rama P; Elsheikh A
    Eye Vis (Lond); 2016; 3():21. PubMed ID: 27512719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traction on the retina induced by saccadic eye movements in the presence of posterior vitreous detachment.
    Repetto R; Tatone A; Testa A; Colangeli E
    Biomech Model Mechanobiol; 2011 Apr; 10(2):191-202. PubMed ID: 20512608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-specific ultrasound elastography using a multi-layered shear wave dispersion model for assessing the viscoelastic properties.
    Lu G; Li R; Qian X; Chen R; Jiang L; Chen Z; Kirk Shung K; Humayun MS; Zhou Q
    Phys Med Biol; 2021 Jan; 66(3):035003. PubMed ID: 33181500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous.
    Swindle KE; Hamilton PD; Ravi N
    J Biomed Mater Res A; 2008 Dec; 87(3):656-65. PubMed ID: 18189301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic shear properties of porcine temporomandibular joint disc.
    Wu Y; Kuo J; Wright GJ; Cisewski SE; Wei F; Kern MJ; Yao H
    Orthod Craniofac Res; 2015 Apr; 18 Suppl 1(0 1):156-63. PubMed ID: 25865544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of the vitreous body: Part 2. Viscoelasticity of bovine and porcine vitreous.
    Lee B; Litt M; Buchsbaum G
    Biorheology; 1994; 31(4):327-38. PubMed ID: 7981433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evaluation of in situ gels as short term vitreous substitutes.
    Suri S; Banerjee R
    J Biomed Mater Res A; 2006 Dec; 79(3):650-64. PubMed ID: 16826595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element model of ocular injury in abusive head trauma.
    Rangarajan N; Kamalakkannan SB; Hasija V; Shams T; Jenny C; Serbanescu I; Ho J; Rusinek M; Levin AV
    J AAPOS; 2009 Aug; 13(4):364-9. PubMed ID: 19419890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods.
    Chawla A; Mukherjee S; Karthikeyan B
    Biomech Model Mechanobiol; 2009 Feb; 8(1):67-76. PubMed ID: 18293021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posterior vitreous detachment with dispase.
    Tezel TH; Del Priore LV; Kaplan HJ
    Retina; 1998; 18(1):7-15. PubMed ID: 9502275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.