These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 33530912)
21. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner. Park JW; Oh SA; Yea JW; Kang MK PLoS One; 2017; 12(5):e0177562. PubMed ID: 28494012 [TBL] [Abstract][Full Text] [Related]
22. Clinical applications of 3-dimensional printing in radiation therapy. Zhao Y; Moran K; Yewondwossen M; Allan J; Clarke S; Rajaraman M; Wilke D; Joseph P; Robar JL Med Dosim; 2017 Summer; 42(2):150-155. PubMed ID: 28495033 [TBL] [Abstract][Full Text] [Related]
23. Design and production of 3D printed bolus for electron radiation therapy. Su S; Moran K; Robar JL J Appl Clin Med Phys; 2014 Jul; 15(4):4831. PubMed ID: 25207410 [TBL] [Abstract][Full Text] [Related]
24. Assessing the fit of 3D printed bolus from CT, optical scanner and photogrammetry methods. Maxwell SK; Charles PH; Cassim N; Kairn T; Crowe SB Phys Eng Sci Med; 2020 Jun; 43(2):601-607. PubMed ID: 32524442 [TBL] [Abstract][Full Text] [Related]
25. Technical note: Commissioning of a low-cost system for directly 3D printed flexible bolus. Baltz GC; Kirsner SM J Appl Clin Med Phys; 2023 Dec; 24(12):e14206. PubMed ID: 37962024 [TBL] [Abstract][Full Text] [Related]
26. Physical and dosimetric characterization of thermoset shape memory bolus developed for radiotherapy. Aoyama T; Uto K; Shimizu H; Ebara M; Kitagawa T; Tachibana H; Suzuki K; Kodaira T Med Phys; 2020 Dec; 47(12):6103-6112. PubMed ID: 33012062 [TBL] [Abstract][Full Text] [Related]
27. Comparison of 3D printed nose bolus to traditional wax bolus for cost-effectiveness, volumetric accuracy and dosimetric effect. Albantow C; Hargrave C; Brown A; Halsall C J Med Radiat Sci; 2020 Mar; 67(1):54-63. PubMed ID: 32011102 [TBL] [Abstract][Full Text] [Related]
28. Efficacy of patient-specific bolus created using three-dimensional printing technique in photon radiotherapy. Fujimoto K; Shiinoki T; Yuasa Y; Hanazawa H; Shibuya K Phys Med; 2017 Jun; 38():1-9. PubMed ID: 28610688 [TBL] [Abstract][Full Text] [Related]
29. Technical note: Evaluation of a silicone-based custom bolus for radiation therapy of a superficial pelvic tumor. Wang KM; Rickards AJ; Bingham T; Tward JD; Price RG J Appl Clin Med Phys; 2022 Apr; 23(4):e13538. PubMed ID: 35084098 [TBL] [Abstract][Full Text] [Related]
30. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters. Bache ST; Juang T; Belley MD; Koontz BF; Adamovics J; Yoshizumi TT; Kirsch DG; Oldham M Med Phys; 2015 Feb; 42(2):846-55. PubMed ID: 25652497 [TBL] [Abstract][Full Text] [Related]
31. Development of a 3D printing process of bolus using BolusCM material for radiotherapy with electrons. Diaz-Merchan JA; Martinez-Ovalle SA; Vega-Carrillo HR Appl Radiat Isot; 2023 Sep; 199():110899. PubMed ID: 37321051 [TBL] [Abstract][Full Text] [Related]
32. Characterization and clinical validation of patient-specific three-dimensional printed tissue-equivalent bolus for radiotherapy of head and neck malignancies involving skin. Dyer BA; Campos DD; Hernandez DD; Wright CL; Perks JR; Lucero SA; Bewley AF; Yamamoto T; Zhu X; Rao SS Phys Med; 2020 Sep; 77():138-145. PubMed ID: 32829102 [TBL] [Abstract][Full Text] [Related]
33. A three-dimensional printed customized bolus: adapting to the shape of the outer ear. Gomez G; Baeza M; Mateos JC; Rivas JA; Simon FJL; Ortega DM; de Los Ángeles Flores Carrión M; Del Campo ER; Gómez-Cía T; Guerra JLL Rep Pract Oncol Radiother; 2021; 26(2):211-217. PubMed ID: 34211771 [TBL] [Abstract][Full Text] [Related]
34. A modern mold room: Meshing 3D surface scanning, digital design, and 3D printing with bolus fabrication. Sasaki DK; McGeachy P; Alpuche Aviles JE; McCurdy B; Koul R; Dubey A J Appl Clin Med Phys; 2019 Sep; 20(9):78-85. PubMed ID: 31454148 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of the quality of fit of flexible bolus material created using 3D printing technology. Malone C; Gill E; Lott T; Rogerson C; Keogh S; Mousli M; Carroll D; Kelly C; Gaffney J; McClean B J Appl Clin Med Phys; 2022 Mar; 23(3):e13490. PubMed ID: 35048501 [TBL] [Abstract][Full Text] [Related]
36. An evaluation of consumer smartphones for generating bolus and surface mould applicators for radiation oncology. Bridger CA; Caraça Santos AM; Reich PD; Douglass MJJ Med Phys; 2024 Jun; 51(6):4447-4457. PubMed ID: 38709978 [TBL] [Abstract][Full Text] [Related]
37. A novel 3D-printed phantom insert for 4D PET/CT imaging and simultaneous integrated boost radiotherapy. Cerviño L; Soultan D; Cornell M; Yock A; Pettersson N; Song WY; Aguilera J; Advani S; Murphy J; Hoh C; James C; Paravati A; Coope R; Gill B; Moiseenko V Med Phys; 2017 Oct; 44(10):5467-5474. PubMed ID: 28766726 [TBL] [Abstract][Full Text] [Related]
38. A method for generating intensity-modulated radiation therapy fields for small animal irradiators utilizing 3D-printed compensator molds. Yoon SW; Kodra J; Miles DA; Kirsch DG; Oldham M Med Phys; 2020 Sep; 47(9):4363-4371. PubMed ID: 32281657 [TBL] [Abstract][Full Text] [Related]
39. Bio-compatible patient-specific elastic bolus for clinical implementation. Park JM; Son J; An HJ; Kim JH; Wu HG; Kim JI Phys Med Biol; 2019 May; 64(10):105006. PubMed ID: 31022714 [TBL] [Abstract][Full Text] [Related]
40. Dosimetric Evaluation of Commercially Available Flat vs. Self-Produced 3D-Conformal Silicone Boluses for the Head and Neck Region. Pollmann S; Toussaint A; Flentje M; Wegener S; Lewitzki V Front Oncol; 2022; 12():881439. PubMed ID: 36033533 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]