These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 33531073)
1. Robustness of magnetic resonance radiomic features to pixel size resampling and interpolation in patients with cervical cancer. Park SH; Lim H; Bae BK; Hahm MH; Chong GO; Jeong SY; Kim JC Cancer Imaging; 2021 Feb; 21(1):19. PubMed ID: 33531073 [TBL] [Abstract][Full Text] [Related]
2. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Shafiq-Ul-Hassan M; Zhang GG; Latifi K; Ullah G; Hunt DC; Balagurunathan Y; Abdalah MA; Schabath MB; Goldgof DG; Mackin D; Court LE; Gillies RJ; Moros EG Med Phys; 2017 Mar; 44(3):1050-1062. PubMed ID: 28112418 [TBL] [Abstract][Full Text] [Related]
3. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the linear interpolation method in correcting the influence of slice thicknesses on radiomic feature values in solid pulmonary nodules: a prospective patient study. Yang S; Wu N; Zhang L; Li M Ann Transl Med; 2021 Feb; 9(4):279. PubMed ID: 33708906 [TBL] [Abstract][Full Text] [Related]
5. Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Fiset S; Welch ML; Weiss J; Pintilie M; Conway JL; Milosevic M; Fyles A; Traverso A; Jaffray D; Metser U; Xie J; Han K Radiother Oncol; 2019 Jun; 135():107-114. PubMed ID: 31015155 [TBL] [Abstract][Full Text] [Related]
6. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer. Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961 [TBL] [Abstract][Full Text] [Related]
7. Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis. Ligero M; Jordi-Ollero O; Bernatowicz K; Garcia-Ruiz A; Delgado-Muñoz E; Leiva D; Mast R; Suarez C; Sala-Llonch R; Calvo N; Escobar M; Navarro-Martin A; Villacampa G; Dienstmann R; Perez-Lopez R Eur Radiol; 2021 Mar; 31(3):1460-1470. PubMed ID: 32909055 [TBL] [Abstract][Full Text] [Related]
8. Interchangeability of radiomic features between [18F]-FDG PET/CT and [18F]-FDG PET/MR. Vuong D; Tanadini-Lang S; Huellner MW; Veit-Haibach P; Unkelbach J; Andratschke N; Kraft J; Guckenberger M; Bogowicz M Med Phys; 2019 Apr; 46(4):1677-1685. PubMed ID: 30714158 [TBL] [Abstract][Full Text] [Related]
9. Extracting and Selecting Robust Radiomic Features from PET/MR Images in Nasopharyngeal Carcinoma. Yang P; Xu L; Cao Z; Wan Y; Xue Y; Jiang Y; Yen E; Luo C; Wang J; Rong Y; Niu T Mol Imaging Biol; 2020 Dec; 22(6):1581-1591. PubMed ID: 32557189 [TBL] [Abstract][Full Text] [Related]
10. Optimal co-clinical radiomics: Sensitivity of radiomic features to tumour volume, image noise and resolution in co-clinical T1-weighted and T2-weighted magnetic resonance imaging. Roy S; Whitehead TD; Quirk JD; Salter A; Ademuyiwa FO; Li S; An H; Shoghi KI EBioMedicine; 2020 Sep; 59():102963. PubMed ID: 32891051 [TBL] [Abstract][Full Text] [Related]
11. Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Larue RTHM; van Timmeren JE; de Jong EEC; Feliciani G; Leijenaar RTH; Schreurs WMJ; Sosef MN; Raat FHPJ; van der Zande FHR; Das M; van Elmpt W; Lambin P Acta Oncol; 2017 Nov; 56(11):1544-1553. PubMed ID: 28885084 [TBL] [Abstract][Full Text] [Related]
12. Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study. Mayerhoefer ME; Szomolanyi P; Jirak D; Berg A; Materka A; Dirisamer A; Trattnig S Invest Radiol; 2009 Jul; 44(7):405-11. PubMed ID: 19465863 [TBL] [Abstract][Full Text] [Related]
13. "Real-world" radiomics from multi-vendor MRI: an original retrospective study on the prediction of nodal status and disease survival in breast cancer, as an exemplar to promote discussion of the wider issues. Doran SJ; Kumar S; Orton M; d'Arcy J; Kwaks F; O'Flynn E; Ahmed Z; Downey K; Dowsett M; Turner N; Messiou C; Koh DM Cancer Imaging; 2021 May; 21(1):37. PubMed ID: 34016188 [TBL] [Abstract][Full Text] [Related]
14. Robustness and reproducibility of radiomics in T2 weighted images from magnetic resonance image guided linear accelerator in a phantom study. Sun M; Baiyasi A; Liu X; Shi X; Li X; Zhu J; Yin Y; Hu J; Li Z; Li B Phys Med; 2022 Apr; 96():130-139. PubMed ID: 35287100 [TBL] [Abstract][Full Text] [Related]
15. Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation. Liu Y; Zhang Y; Cheng R; Liu S; Qu F; Yin X; Wang Q; Xiao B; Ye Z J Magn Reson Imaging; 2019 Jan; 49(1):280-290. PubMed ID: 29761595 [TBL] [Abstract][Full Text] [Related]
16. Technical Note: Virtual phantom analyses for preprocessing evaluation and detection of a robust feature set for MRI-radiomics of the brain. Bologna M; Corino V; Mainardi L Med Phys; 2019 Nov; 46(11):5116-5123. PubMed ID: 31539450 [TBL] [Abstract][Full Text] [Related]
17. Magnetic resonance imaging features of tumor and lymph node to predict clinical outcome in node-positive cervical cancer: a retrospective analysis. Park SH; Hahm MH; Bae BK; Chong GO; Jeong SY; Na S; Jeong S; Kim JC Radiat Oncol; 2020 Apr; 15(1):86. PubMed ID: 32312283 [TBL] [Abstract][Full Text] [Related]
18. Classifying early stages of cervical cancer with MRI-based radiomics. Zhao X; Wang X; Zhang B; Liu X; Xuan D; Xia Y; Zhang X Magn Reson Imaging; 2022 Jun; 89():70-76. PubMed ID: 35337907 [TBL] [Abstract][Full Text] [Related]
19. Image resampling and discretization effect on the estimate of myocardial radiomic features from T1 and T2 mapping in hypertrophic cardiomyopathy. Marfisi D; Tessa C; Marzi C; Del Meglio J; Linsalata S; Borgheresi R; Lilli A; Lazzarini R; Salvatori L; Vignali C; Barucci A; Mascalchi M; Casolo G; Diciotti S; Traino AC; Giannelli M Sci Rep; 2022 Jun; 12(1):10186. PubMed ID: 35715531 [TBL] [Abstract][Full Text] [Related]
20. The complexity of tumor shape, spiculatedness, correlates with tumor radiomic shape features. Limkin EJ; Reuzé S; Carré A; Sun R; Schernberg A; Alexis A; Deutsch E; Ferté C; Robert C Sci Rep; 2019 Mar; 9(1):4329. PubMed ID: 30867443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]