These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 33531141)

  • 1. Robust adaptive boosted canonical correlation analysis for quality-relevant process monitoring of wastewater treatment.
    Cheng H; Wu J; Huang D; Liu Y; Wang Q
    ISA Trans; 2021 Nov; 117():210-220. PubMed ID: 33531141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of fault detection methods for wastewater treatment processes.
    Corominas L; Villez K; Aguado D; Rieger L; Rosén C; Vanrolleghem PA
    Biotechnol Bioeng; 2011 Feb; 108(2):333-44. PubMed ID: 20882518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning approaches for data-driven process monitoring of biological wastewater treatment plant: A review of research works on benchmark simulation model No. 1(BSM1).
    Khurshid A; Pani AK
    Environ Monit Assess; 2023 Jul; 195(8):916. PubMed ID: 37402850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing statistical process control charts for fault detection in wastewater treatment.
    Marais HL; Zaccaria V; Odlare M
    Water Sci Technol; 2022 Feb; 85(4):1250-1262. PubMed ID: 35228367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative Study of Deep Neural Network-Aided Canonical Correlation Analysis-Based Process Monitoring and Fault Detection Methods.
    Chen Z; Liang K; Ding SX; Yang C; Peng T; Yuan X
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6158-6172. PubMed ID: 33886482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptive metaheuristic optimization approach for Tennessee Eastman process for an industrial fault tolerant control system.
    Mustafa FE; Ahmed I; Basit A; Alqahtani M; Khalid M
    PLoS One; 2024; 19(2):e0296471. PubMed ID: 38381738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fault Detection of Urban Wastewater Treatment Process Based on Combination of Deep Information and Transformer Network.
    Peng C; FanChao M
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8124-8133. PubMed ID: 37015564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensor fault diagnosis in a wastewater treatment process.
    Lee C; Choi SW; Lee IB
    Water Sci Technol; 2006; 53(1):251-7. PubMed ID: 16532755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive optimal control for a wastewater treatment plant based on a data-driven method.
    Qiao JF; Bo YC; Chai W; Han HG
    Water Sci Technol; 2013; 67(10):2314-20. PubMed ID: 23676404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants.
    Yoo CK; Vanrolleghem PA; Lee IB
    J Biotechnol; 2003 Oct; 105(1-2):135-63. PubMed ID: 14511916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New monitoring technique with an ICA algorithm in the wastewater treatment process.
    Lee JM; Yoo CK; Lee IB
    Water Sci Technol; 2003; 47(12):49-56. PubMed ID: 12926669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy consumption model for wastewater treatment process control.
    Huang X; Han H; Qiao J
    Water Sci Technol; 2013; 67(3):667-74. PubMed ID: 23202574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disturbance detection and isolation in the activated sludge process.
    Yoo CK; Choi SW; Lee I
    Water Sci Technol; 2002; 45(4-5):217-26. PubMed ID: 11936637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complex-valued slow independent component analysis based incipient fault detection and diagnosis method with applications to wastewater treatment processes.
    Xu C; Huang D; Cai B; Chen H; Liu Y
    ISA Trans; 2023 Apr; 135():213-232. PubMed ID: 36175190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and Fast Joint Sparse Constrained Canonical Correlation Analysis for Fault Detection.
    Xiu X; Pan L; Yang Y; Liu W
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):4153-4163. PubMed ID: 36094990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Ensemble Adaptive Sparse Bayesian Transfer Learning Machine for Nonlinear Large-Scale Process Monitoring.
    Cheng H; Liu Y; Huang D; Xu C; Wu J
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33126722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved approach for fault detection by simultaneous overcoming of high-dimensionality, autocorrelation, and time-variability.
    Hajarian N; Movahedi Sobhani F; Sadjadi SJ
    PLoS One; 2020; 15(12):e0243146. PubMed ID: 33332390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmark Simulation Model No 2: finalisation of plant layout and default control strategy.
    Nopens I; Benedetti L; Jeppsson U; Pons MN; Alex J; Copp JB; Gernaey KV; Rosen C; Steyer JP; Vanrolleghem PA
    Water Sci Technol; 2010; 62(9):1967-74. PubMed ID: 21045320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust sparse canonical correlation analysis.
    Wilms I; Croux C
    BMC Syst Biol; 2016 Aug; 10(1):72. PubMed ID: 27516087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Single-Side Neural Network-Aided Canonical Correlation Analysis With Applications to Fault Diagnosis.
    Chen H; Chen Z; Chai Z; Jiang B; Huang B
    IEEE Trans Cybern; 2022 Sep; 52(9):9454-9466. PubMed ID: 33705341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.