These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33531294)

  • 21. Reduced vision in highly myopic eyes without ocular pathology: the ZOC-BHVI high myopia study.
    Jong M; Sankaridurg P; Li W; Resnikoff S; Naidoo K; He M
    Clin Exp Optom; 2018 Jan; 101(1):77-83. PubMed ID: 28696042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peripheral Refraction and Eye Lengths in Myopic Children in the Bifocal Lenses In Nearsighted Kids (BLINK) Study.
    Mutti DO; Sinnott LT; Reuter KS; Walker MK; Berntsen DA; Jones-Jordan LA; Walline JJ;
    Transl Vis Sci Technol; 2019 Apr; 8(2):17. PubMed ID: 31019848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myopia Control Effect Is Influenced by Baseline Relative Peripheral Refraction in Children Wearing Defocus Incorporated Multiple Segments (DIMS) Spectacle Lenses.
    Zhang H; Lam CSY; Tang WC; Leung M; Qi H; Lee PH; To CH
    J Clin Med; 2022 Apr; 11(9):. PubMed ID: 35566423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relative Myopic Defocus in the Superior Retina as an Indicator of Myopia Development in Children.
    Lin Z; Xi X; Wen L; Luo Z; Artal P; Yang Z; Lan W
    Invest Ophthalmol Vis Sci; 2023 Apr; 64(4):16. PubMed ID: 37057974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical 'dampening' of the refractive error to axial length ratio: implications for outcome measures in myopia control studies.
    Cruickshank FE; Logan NS
    Ophthalmic Physiol Opt; 2018 May; 38(3):290-297. PubMed ID: 29691929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peripheral refraction in different ethnicities.
    Kang P; Gifford P; McNamara P; Wu J; Yeo S; Vong B; Swarbrick H
    Invest Ophthalmol Vis Sci; 2010 Nov; 51(11):6059-65. PubMed ID: 20505193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peripheral refraction and retinal contour in stable and progressive myopia.
    Faria-Ribeiro M; Queirós A; Lopes-Ferreira D; Jorge J; González-Méijome JM
    Optom Vis Sci; 2013 Jan; 90(1):9-15. PubMed ID: 23208195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association between relative peripheral refraction and corresponding electro-retinal signals.
    Gupta SK; Chakraborty R; Verkicharla PK
    Ophthalmic Physiol Opt; 2023 May; 43(3):482-493. PubMed ID: 36881496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Off-axis refraction and aberrations following conventional laser in situ keratomileusis.
    Ma L; Atchison DA; Charman WN
    J Cataract Refract Surg; 2005 Mar; 31(3):489-98. PubMed ID: 15811736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Long-term results of perifocal defocus spectacle lens correction in children with progressive myopia].
    Tarutta EP; Proskurina OV; Tarasova NA; Milash SV; Markosyan GA
    Vestn Oftalmol; 2019; 135(5):46-53. PubMed ID: 31714512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of peripheral defocus on axial growth and modulation of refractive error in hyperopes.
    Beasley IG; Davies LN; Logan NS
    Ophthalmic Physiol Opt; 2022 May; 42(3):534-544. PubMed ID: 35187687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of peripheral defocus on axial growth and modulation of refractive error in children with anisohyperopia.
    Beasley IG; Davies LN; Logan NS
    Ophthalmic Physiol Opt; 2023 Jul; 43(4):805-814. PubMed ID: 37026593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Link between parental myopia and early-onset high myopia: Insights from a clinical retrospective analysis.
    Chamarty S; Kamalon S; Madishetti N; Verkicharla PK
    Ophthalmic Physiol Opt; 2024 Sep; 44(6):1270-1278. PubMed ID: 38803137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Peripheral refraction: cause or effect of refraction development?].
    Tarutta EP; Iomdina EN; Kvaratskheliya NG; Milash SV; Kruzhkova GV
    Vestn Oftalmol; 2017; 133(1):70-74. PubMed ID: 28291203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the Visual Acuity and Refractive Error Using OPDIII and Subjective Findings in Visually Normal Subjects.
    Alamdar M; Jafarzadehpur E; Mirzajani A; Yekta AA; Khabazkhoob M
    Eye Contact Lens; 2018 Nov; 44 Suppl 2():S302-S306. PubMed ID: 30379733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nasal-temporal asymmetric changes in retinal peripheral refractive error in myopic adolescents induced by overnight orthokeratology lenses.
    Chen X; Xiong Y; Qi X; Liu L
    Front Neurol; 2022; 13():1006112. PubMed ID: 36938370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of peripheral refractive errors of myopic and non-myopic Chinese eyes.
    Chen X; Sankaridurg P; Donovan L; Lin Z; Li L; Martinez A; Holden B; Ge J
    Vision Res; 2010 Jan; 50(1):31-5. PubMed ID: 19825388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peripheral defocus with spherical and multifocal soft contact lenses.
    Berntsen DA; Kramer CE
    Optom Vis Sci; 2013 Nov; 90(11):1215-24. PubMed ID: 24076542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peripheral optical quality and myopia progression in children.
    Yamaguchi T; Ohnuma K; Konomi K; Satake Y; Shimazaki J; Negishi K
    Graefes Arch Clin Exp Ophthalmol; 2013 Oct; 251(10):2451-61. PubMed ID: 23760671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peripheral defocus with single-vision spectacle lenses in myopic children.
    Lin Z; Martinez A; Chen X; Li L; Sankaridurg P; Holden BA; Ge J
    Optom Vis Sci; 2010 Jan; 87(1):4-9. PubMed ID: 19826316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.