BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33531495)

  • 1. Photoactivatable CaMKII induces synaptic plasticity in single synapses.
    Shibata ACE; Ueda HH; Eto K; Onda M; Sato A; Ohba T; Nabekura J; Murakoshi H
    Nat Commun; 2021 Feb; 12(1):751. PubMed ID: 33531495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic neuronal excitation leads to dual metaplasticity in the signaling for structural long-term potentiation.
    Ueda HH; Nagasawa Y; Sato A; Onda M; Murakoshi H
    Cell Rep; 2022 Jan; 38(1):110153. PubMed ID: 34986356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics.
    Nagasawa Y; Ueda HH; Kawabata H; Murakoshi H
    Biophys Physicobiol; 2023; 20(2):e200027. PubMed ID: 38496236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of Endogenous CaMKII Required for Synaptic Plasticity Revealed by Optogenetic Kinase Inhibitor.
    Murakoshi H; Shin ME; Parra-Bueno P; Szatmari EM; Shibata ACE; Yasuda R
    Neuron; 2017 Apr; 94(1):37-47.e5. PubMed ID: 28318784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactivatable CaMKII: Rewiring the Brain, One Synapse at a Time.
    Gee CE; Oertner TG
    Trends Neurosci; 2021 Apr; 44(4):246-247. PubMed ID: 33674136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity.
    Lee HK; Barbarosie M; Kameyama K; Bear MF; Huganir RL
    Nature; 2000 Jun; 405(6789):955-9. PubMed ID: 10879537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic Control of Synaptic Composition and Function.
    Sinnen BL; Bowen AB; Forte JS; Hiester BG; Crosby KC; Gibson ES; Dell'Acqua ML; Kennedy MJ
    Neuron; 2017 Feb; 93(3):646-660.e5. PubMed ID: 28132827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of CaMKII action in long-term potentiation.
    Lisman J; Yasuda R; Raghavachari S
    Nat Rev Neurosci; 2012 Feb; 13(3):169-82. PubMed ID: 22334212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of enzymatic and structural functions of CaMKII in long-term potentiation.
    Kim K; Saneyoshi T; Hosokawa T; Okamoto K; Hayashi Y
    J Neurochem; 2016 Dec; 139(6):959-972. PubMed ID: 27207106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of Filamentous Actin to CaMKII as Potential Regulation Mechanism of Bidirectional Synaptic Plasticity by β CaMKII in Cerebellar Purkinje Cells.
    Pinto TM; Schilstra MJ; Roque AC; Steuber V
    Sci Rep; 2020 Jun; 10(1):9019. PubMed ID: 32488204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity.
    Ehrlich I; Malinow R
    J Neurosci; 2004 Jan; 24(4):916-27. PubMed ID: 14749436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaMKII Autophosphorylation Is Necessary for Optimal Integration of Ca
    Chang JY; Parra-Bueno P; Laviv T; Szatmari EM; Lee SR; Yasuda R
    Neuron; 2017 May; 94(4):800-808.e4. PubMed ID: 28521133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses.
    Lemieux M; Labrecque S; Tardif C; Labrie-Dion É; Lebel É; De Koninck P
    J Cell Biol; 2012 Sep; 198(6):1055-73. PubMed ID: 22965911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental switch in the kinase dependency of long-term potentiation depends on expression of GluA4 subunit-containing AMPA receptors.
    Luchkina NV; Huupponen J; Clarke VR; Coleman SK; Keinänen K; Taira T; Lauri SE
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4321-6. PubMed ID: 24599589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Optogenetics sheds light on memory research.Development and application of photoactivatable CaMKⅡ inhibitory peptide to the study of synaptic plasticity.].
    Murakoshi H
    Clin Calcium; 2018; 28(3):414-419. PubMed ID: 29512534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of CaMKII in single dendritic spines during long-term potentiation.
    Lee SJ; Escobedo-Lozoya Y; Szatmari EM; Yasuda R
    Nature; 2009 Mar; 458(7236):299-304. PubMed ID: 19295602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Live Imaging of Multiple Endogenous Proteins Reveals a Mechanism for Alzheimer's-Related Plasticity Impairment.
    Cook SG; Goodell DJ; Restrepo S; Arnold DB; Bayer KU
    Cell Rep; 2019 Apr; 27(3):658-665.e4. PubMed ID: 30995464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction.
    Hayashi Y; Shi SH; Esteban JA; Piccini A; Poncer JC; Malinow R
    Science; 2000 Mar; 287(5461):2262-7. PubMed ID: 10731148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation.
    Adesnik H; Nicoll RA
    J Neurosci; 2007 Apr; 27(17):4598-602. PubMed ID: 17460072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B.
    She K; Rose JK; Craig AM
    Mol Cell Neurosci; 2012 Nov; 51(3-4):68-78. PubMed ID: 22902837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.