These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33532637)

  • 21. The uulmMAC Database-A Multimodal Affective Corpus for Affective Computing in Human-Computer Interaction.
    Hazer-Rau D; Meudt S; Daucher A; Spohrs J; Hoffmann H; Schwenker F; Traue HC
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A New Approach on HCI Extracting Conscious Jaw Movements Based on EEG Signals Using Machine Learnings.
    Bascil MS
    J Med Syst; 2018 Aug; 42(9):169. PubMed ID: 30078146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling mouse pointer position using an infrared head-operated joystick.
    Evans DG; Drew R; Blenkhorn P
    IEEE Trans Rehabil Eng; 2000 Mar; 8(1):107-17. PubMed ID: 10779114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MovExp: A Versatile Visualization Tool for Human-Computer Interaction Studies with 3D Performance and Biomechanical Data.
    Palmas G; Bachynskyi M; Oulasvirta A; Seidel HP; Weinkauf T
    IEEE Trans Vis Comput Graph; 2014 Dec; 20(12):2359-68. PubMed ID: 26356950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supervised Machine Learning Applied to Wearable Sensor Data Can Accurately Classify Functional Fitness Exercises Within a Continuous Workout.
    Preatoni E; Nodari S; Lopomo NF
    Front Bioeng Biotechnol; 2020; 8():664. PubMed ID: 32733863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computer mouse movement patterns: A potential marker of mild cognitive impairment.
    Seelye A; Hagler S; Mattek N; Howieson DB; Wild K; Dodge HH; Kaye JA
    Alzheimers Dement (Amst); 2015 Dec; 1(4):472-480. PubMed ID: 26878035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards a holistic assessment of the user experience with hybrid BCIs.
    Lorenz R; Pascual J; Blankertz B; Vidaurre C
    J Neural Eng; 2014 Jun; 11(3):035007. PubMed ID: 24835132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pointer Defect Detection Based on Transfer Learning and Improved Cascade-RCNN.
    Zhao W; Huang H; Li D; Chen F; Cheng W
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32882801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mousetrap: An integrated, open-source mouse-tracking package.
    Kieslich PJ; Henninger F
    Behav Res Methods; 2017 Oct; 49(5):1652-1667. PubMed ID: 28646399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The camera mouse: visual tracking of body features to provide computer access for people with severe disabilities.
    Betke M; Gips J; Fleming P
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):1-10. PubMed ID: 12173734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-Instrumental Movement Inhibition (NIMI) Differentially Suppresses Head and Thigh Movements during Screenic Engagement: Dependence on Interaction.
    Witchel HJ; Santos CP; Ackah JK; Westling CE; Chockalingam N
    Front Psychol; 2016; 7():157. PubMed ID: 26941666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BioMove: Biometric User Identification from Human Kinesiological Movements for Virtual Reality Systems.
    Olade I; Fleming C; Liang HN
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A High-Robust Automatic Reading Algorithm of Pointer Meters Based on Text Detection.
    Li Z; Zhou Y; Sheng Q; Chen K; Huang J
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33096701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Target Uncertainty During Motor Decision-Making: The Time Course of Movement Variability Reveals the Effect of Different Sources of Uncertainty on the Control of Reaching Movements.
    Krüger M; Hermsdörfer J
    Front Psychol; 2019; 10():41. PubMed ID: 30745887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leveraging Eye Tracking to Prioritize Relevant Medical Record Data: Comparative Machine Learning Study.
    King AJ; Cooper GF; Clermont G; Hochheiser H; Hauskrecht M; Sittig DF; Visweswaran S
    J Med Internet Res; 2020 Apr; 22(4):e15876. PubMed ID: 32238342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring the positional accuracy of computer assisted surgical tracking systems.
    Clarke JV; Deakin AH; Nicol AC; Picard F
    Comput Aided Surg; 2010; 15(1-3):13-8. PubMed ID: 20433317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel gaze-supported multimodal human-computer interaction for ultrasound machines.
    Zhu H; Salcudean SE; Rohling RN
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1107-1115. PubMed ID: 30977092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DESIGN AND DEVELOPMENT OF HUMAN COMPUTER INTERFACE USING ELECTROOCULOGRAM WITH DEEP LEARNING.
    Teng G; He Y; Zhao H; Liu D; Xiao J; Ramkumar S
    Artif Intell Med; 2020 Jan; 102():101765. PubMed ID: 31980102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.