These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 33532777)
1. Effect of mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell-cell fusion function. Barrett CT; Neal HE; Edmonds K; Moncman CL; Thompson R; Branttie JM; Boggs KB; Wu CY; Leung DW; Dutch RE bioRxiv; 2021 Jan; ():. PubMed ID: 33532777 [TBL] [Abstract][Full Text] [Related]
2. Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell-cell fusion. Barrett CT; Neal HE; Edmonds K; Moncman CL; Thompson R; Branttie JM; Boggs KB; Wu CY; Leung DW; Dutch RE J Biol Chem; 2021 Jul; 297(1):100902. PubMed ID: 34157282 [TBL] [Abstract][Full Text] [Related]
3. SARS-CoV-2 Spike Furin Cleavage Site and S2' Basic Residues Modulate the Entry Process in a Host Cell-Dependent Manner. Lavie M; Dubuisson J; Belouzard S J Virol; 2022 Jul; 96(13):e0047422. PubMed ID: 35678602 [TBL] [Abstract][Full Text] [Related]
5. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Belouzard S; Chu VC; Whittaker GR Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5871-6. PubMed ID: 19321428 [TBL] [Abstract][Full Text] [Related]
6. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. Nguyen HT; Zhang S; Wang Q; Anang S; Wang J; Ding H; Kappes JC; Sodroski J J Virol; 2021 Mar; 95(5):. PubMed ID: 33310888 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide bioinformatics analysis of human protease capacity for proteolytic cleavage of the SARS-CoV-2 spike glycoprotein. Matveev EV; Ponomarev GV; Kazanov MD Microbiol Spectr; 2024 Feb; 12(2):e0353023. PubMed ID: 38189333 [TBL] [Abstract][Full Text] [Related]
8. The "LLQY" Motif on SARS-CoV-2 Spike Protein Affects S Incorporation into Virus Particles. Du S; Xu W; Wang Y; Li L; Hao P; Tian M; Wang M; Li T; Wu S; Liu Q; Bai J; Qu X; Jin N; Zhou B; Liao M; Li C J Virol; 2022 Mar; 96(6):e0189721. PubMed ID: 35045269 [TBL] [Abstract][Full Text] [Related]
9. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. Hörnich BF; Großkopf AK; Schlagowski S; Tenbusch M; Kleine-Weber H; Neipel F; Stahl-Hennig C; Hahn AS J Virol; 2021 Apr; 95(9):. PubMed ID: 33608407 [TBL] [Abstract][Full Text] [Related]
10. Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential Role of Proteases beyond Furin. Tang T; Jaimes JA; Bidon MK; Straus MR; Daniel S; Whittaker GR ACS Infect Dis; 2021 Feb; 7(2):264-272. PubMed ID: 33432808 [TBL] [Abstract][Full Text] [Related]
11. The Spike-Stabilizing D614G Mutation Interacts with S1/S2 Cleavage Site Mutations To Promote the Infectious Potential of SARS-CoV-2 Variants. Gellenoncourt S; Saunders N; Robinot R; Auguste L; Rajah MM; Kervevan J; Jeger-Madiot R; Staropoli I; Planchais C; Mouquet H; Buchrieser J; Schwartz O; Chakrabarti LA J Virol; 2022 Oct; 96(19):e0130122. PubMed ID: 36121299 [TBL] [Abstract][Full Text] [Related]
12. In silico analysis of mutations near S1/S2 cleavage site in SARS-CoV-2 spike protein reveals increased propensity of glycosylation in Omicron strain. Beaudoin CA; Pandurangan AP; Kim SY; Hamaia SW; Huang CL; Blundell TL; Vedithi SC; Jackson AP J Med Virol; 2022 Sep; 94(9):4181-4192. PubMed ID: 35575289 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. Madu IG; Roth SL; Belouzard S; Whittaker GR J Virol; 2009 Aug; 83(15):7411-21. PubMed ID: 19439480 [TBL] [Abstract][Full Text] [Related]
14. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design. Aydin H; Al-Khooly D; Lee JE Protein Sci; 2014 May; 23(5):603-17. PubMed ID: 24519901 [TBL] [Abstract][Full Text] [Related]
16. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. Jaimes JA; Millet JK; Whittaker GR SSRN; 2020 May; ():3581359. PubMed ID: 32714113 [TBL] [Abstract][Full Text] [Related]
17. Trypsin enhances SARS-CoV-2 infection by facilitating viral entry. Kim Y; Jang G; Lee D; Kim N; Seon JW; Kim YH; Lee C Arch Virol; 2022 Feb; 167(2):441-458. PubMed ID: 35079901 [TBL] [Abstract][Full Text] [Related]
18. Roles of host proteases in the entry of SARS-CoV-2. Zabiegala A; Kim Y; Chang KO Anim Dis; 2023; 3(1):12. PubMed ID: 37128508 [TBL] [Abstract][Full Text] [Related]
19. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Hoffmann M; Kleine-Weber H; Pöhlmann S Mol Cell; 2020 May; 78(4):779-784.e5. PubMed ID: 32362314 [TBL] [Abstract][Full Text] [Related]
20. Impact of SARS-CoV-2 Spike Mutations on Its Activation by TMPRSS2 and the Alternative TMPRSS13 Protease. Stevaert A; Van Berwaer R; Mestdagh C; Vandeput J; Vanstreels E; Raeymaekers V; Laporte M; Naesens L mBio; 2022 Aug; 13(4):e0137622. PubMed ID: 35913162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]