These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 33533259)

  • 21. A novel type of familial hypercholesterolemia: double heterozygous mutations in LDL receptor and LDL receptor adaptor protein 1 gene.
    Tada H; Kawashiri MA; Ohtani R; Noguchi T; Nakanishi C; Konno T; Hayashi K; Nohara A; Inazu A; Kobayashi J; Mabuchi H; Yamagishi M
    Atherosclerosis; 2011 Dec; 219(2):663-6. PubMed ID: 21872251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double-heterozygous autosomal dominant hypercholesterolemia: Clinical characterization of an underreported disease.
    Sjouke B; Defesche JC; Hartgers ML; Wiegman A; Roeters van Lennep JE; Kastelein JJ; Hovingh GK
    J Clin Lipidol; 2016; 10(6):1462-1469. PubMed ID: 27919364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenotypical, Clinical, and Molecular Aspects of Adults and Children With Homozygous Familial Hypercholesterolemia in Iberoamerica.
    Alves AC; Alonso R; Diaz-Diaz JL; Medeiros AM; Jannes CE; Merchan A; Vasques-Cardenas NA; Cuevas A; Chacra AP; Krieger JE; Arroyo R; Arrieta F; Schreier L; Corral P; Bañares VG; Araujo MB; Bustos P; Asenjo S; Stoll M; Dell'Oca N; Reyes M; Ressia A; Campo R; Magaña-Torres MT; Metha R; Aguilar-Salinas CA; Ceballos-Macias JJ; Morales ÁJR; Mata P; Bourbon M; Santos RD
    Arterioscler Thromb Vasc Biol; 2020 Oct; 40(10):2508-2515. PubMed ID: 32757650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss-of-function mutation R46L in the PCSK9 gene has little impact on the levels of total serum cholesterol in familial hypercholesterolemia heterozygotes.
    Strøm TB; Holla ØL; Cameron J; Berge KE; Leren TP
    Clin Chim Acta; 2010 Feb; 411(3-4):229-33. PubMed ID: 19917273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia.
    Somanathan S; Jacobs F; Wang Q; Hanlon AL; Wilson JM; Rader DJ
    Circ Res; 2014 Aug; 115(6):591-9. PubMed ID: 25023731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a novel LDLR disease-causing variant using capture-based next-generation sequencing screening of familial hypercholesterolemia patients in Taiwan.
    Hsiung YC; Lin PC; Chen CS; Tung YC; Yang WS; Chen PL; Su TC
    Atherosclerosis; 2018 Oct; 277():440-447. PubMed ID: 30270083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The benign c.344G > A: p.(Arg115His) variant in the LDLR gene interpreted from a pedigree-based genetic analysis of familial hypercholesterolemia.
    Hori M; Takahashi A; Son C; Ogura M; Harada-Shiba M
    Lipids Health Dis; 2020 Apr; 19(1):62. PubMed ID: 32252761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The contribution of PCSK9 levels to the phenotypic severity of familial hypercholesterolemia is independent of LDL receptor genotype.
    Drouin-Chartier JP; Tremblay AJ; Hogue JC; Ooi TC; Lamarche B; Couture P
    Metabolism; 2015 Nov; 64(11):1541-7. PubMed ID: 26371983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The
    Meshkov A; Ershova A; Kiseleva A; Zotova E; Sotnikova E; Petukhova A; Zharikova A; Malyshev P; Rozhkova T; Blokhina A; Limonova A; Ramensky V; Divashuk M; Khasanova Z; Bukaeva A; Kurilova O; Skirko O; Pokrovskaya M; Mikova V; Snigir E; Akinshina A; Mitrofanov S; Kashtanova D; Makarov V; Kukharchuk V; Boytsov S; Yudin S; Drapkina O
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33418990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of gene variants on the thickness and softness of the Achilles tendon in familial hypercholesterolemia.
    Michikura M; Hori M; Ogura M; Hosoda K; Harada-Shiba M
    Atherosclerosis; 2022 Oct; 358():41-46. PubMed ID: 36087353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiovascular event reduction with PCSK9 inhibition among 1578 patients with familial hypercholesterolemia: Results from the SPIRE randomized trials of bococizumab.
    Ridker PM; Rose LM; Kastelein JJP; Santos RD; Wei C; Revkin J; Yunis C; Tardif JC; Shear CL;
    J Clin Lipidol; 2018; 12(4):958-965. PubMed ID: 29685591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LDLR and PCSK9 3´UTR variants and their putative effects on microRNA molecular interactions in familial hypercholesterolemia: a computational approach.
    de Freitas RCC; Bortolin RH; Borges JB; de Oliveira VF; Dagli-Hernandez C; Marçal EDSR; Bastos GM; Gonçalves RM; Faludi AA; Silbiger VN; Luchessi AD; Hirata RDC; Hirata MH
    Mol Biol Rep; 2023 Nov; 50(11):9165-9177. PubMed ID: 37776414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of familial hypercholesterolemia-associated genes on the phenotype of premature myocardial infarction.
    Lee C; Cui Y; Song J; Li S; Zhang F; Wu M; Li L; Hu D; Chen H
    Lipids Health Dis; 2019 Apr; 18(1):95. PubMed ID: 30971288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coronary Artery Plaque Regression by a PCSK9 Antibody and Rosuvastatin in Double-heterozygous Familial Hypercholesterolemia with an LDL Receptor Mutation and a PCSK9 V4I Mutation.
    Shirahama R; Ono T; Nagamatsu S; Sueta D; Takashio S; Chitose T; Fujisue K; Sakamoto K; Yamamoto E; Izumiya Y; Kaikita K; Hokimoto S; Hori M; Harada-Shiba M; Kajiwara I; Ogawa H; Tsujita K
    Intern Med; 2018; 57(24):3551-3557. PubMed ID: 30555118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipoprotein(a) in Familial Hypercholesterolemia With Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Gain-of-Function Mutations.
    Tada H; Kawashiri MA; Yoshida T; Teramoto R; Nohara A; Konno T; Inazu A; Mabuchi H; Yamagishi M; Hayashi K
    Circ J; 2016; 80(2):512-8. PubMed ID: 26632531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Causative mutations and premature cardiovascular disease in patients with heterozygous familial hypercholesterolaemia.
    Rubba P; Gentile M; Marotta G; Iannuzzi A; Sodano M; De Simone B; Jossa F; Iannuzzo G; Giacobbe C; Di Taranto MD; Fortunato G
    Eur J Prev Cardiol; 2017 Jul; 24(10):1051-1059. PubMed ID: 28353356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methylation status of
    Silva Rodrigues Marçal ED; Borges JB; Bastos GM; Crespo Hirata TD; de Oliveira VF; Gonçalves RM; Faludi AA; Dias França JI; de Oliveira Silva DV; Malaquias VB; Luchessi AD; Silbiger VN; Nakazone MA; Carmo TS; Silva Souza DR; Sampaio MF; Crespo Hirata RD; Hirata MH
    Epigenomics; 2024; 16(11-12):809-820. PubMed ID: 38884343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Next-generation sequencing to confirm clinical familial hypercholesterolemia.
    Reeskamp LF; Tromp TR; Defesche JC; Grefhorst A; Stroes ESG; Hovingh GK; Zuurbier L
    Eur J Prev Cardiol; 2021 Jul; 28(8):875-883. PubMed ID: 34298557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Screening and verifying the mutations in the LDLR and APOB genes in a Chinese family with familial hypercholesterolemia.
    Lv X; Wang C; Liu L; Yin G; Zhang W; Abdu FA; Shi T; Zhang Q; Che W
    Lipids Health Dis; 2023 Oct; 22(1):175. PubMed ID: 37853441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Next generation sequencing to identify novel genetic variants causative of autosomal dominant familial hypercholesterolemia associated with increased risk of coronary heart disease.
    Al-Allaf FA; Athar M; Abduljaleel Z; Taher MM; Khan W; Ba-Hammam FA; Abalkhail H; Alashwal A
    Gene; 2015 Jul; 565(1):76-84. PubMed ID: 25839937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.