These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33533273)

  • 1. Survival prediction in glioblastoma on post-contrast magnetic resonance imaging using filtration based first-order texture analysis: Comparison of multiple machine learning models.
    Priya S; Agarwal A; Ward C; Locke T; Monga V; Bathla G
    Neuroradiol J; 2021 Aug; 34(4):355-362. PubMed ID: 33533273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glioblastoma and primary central nervous system lymphoma: differentiation using MRI derived first-order texture analysis - a machine learning study.
    Priya S; Ward C; Locke T; Soni N; Maheshwarappa RP; Monga V; Agarwal A; Bathla G
    Neuroradiol J; 2021 Aug; 34(4):320-328. PubMed ID: 33657924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study.
    Goyal A; Razik A; Kandasamy D; Seth A; Das P; Ganeshan B; Sharma R
    Abdom Radiol (NY); 2019 Oct; 44(10):3336-3349. PubMed ID: 31300850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.
    Nakagawa M; Nakaura T; Namimoto T; Kitajima M; Uetani H; Tateishi M; Oda S; Utsunomiya D; Makino K; Nakamura H; Mukasa A; Hirai T; Yamashita Y
    Eur J Radiol; 2018 Nov; 108():147-154. PubMed ID: 30396648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma.
    Yang D; Rao G; Martinez J; Veeraraghavan A; Rao A
    Med Phys; 2015 Nov; 42(11):6725-35. PubMed ID: 26520762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma.
    Kunimatsu A; Kunimatsu N; Yasaka K; Akai H; Kamiya K; Watadani T; Mori H; Abe O
    Magn Reson Med Sci; 2019 Jan; 18(1):44-52. PubMed ID: 29769456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filtration-Histogram Based Magnetic Resonance Texture Analysis (MRTA) for the Distinction of Primary Central Nervous System Lymphoma and Glioblastoma.
    MacIver CL; Busaidi AA; Ganeshan B; Maynard JA; Wastling S; Hyare H; Brandner S; Markus JE; Lewis MA; Groves AM; Cwynarski K; Thust SC
    J Pers Med; 2021 Aug; 11(9):. PubMed ID: 34575653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance imaging-based texture analysis for the prediction of postoperative clinical outcome in uterine cervical cancer.
    Kim KE; Kim CK
    Abdom Radiol (NY); 2022 Jan; 47(1):352-361. PubMed ID: 34605967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma.
    Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N
    Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis.
    Liu Y; Zhang X; Feng N; Yin L; He Y; Xu X; Lu H
    Acta Radiol; 2018 Oct; 59(10):1239-1246. PubMed ID: 29430935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An initial experience of machine learning based on multi-sequence texture parameters in magnetic resonance imaging to differentiate glioblastoma from brain metastases.
    Tateishi M; Nakaura T; Kitajima M; Uetani H; Nakagawa M; Inoue T; Kuroda JI; Mukasa A; Yamashita Y
    J Neurol Sci; 2020 Mar; 410():116514. PubMed ID: 31869660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation.
    Assefa D; Keller H; Ménard C; Laperriere N; Ferrari RJ; Yeung I
    Med Phys; 2010 Apr; 37(4):1722-36. PubMed ID: 20443493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach.
    Ortiz-Ramón R; Ruiz-España S; Mollá-Olmos E; Moratal D
    Phys Med; 2020 Aug; 76():44-54. PubMed ID: 32593138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI texture analysis (MRTA) of T2-weighted images in Crohn's disease may provide information on histological and MRI disease activity in patients undergoing ileal resection.
    Makanyanga J; Ganeshan B; Rodriguez-Justo M; Bhatnagar G; Groves A; Halligan S; Miles K; Taylor SA
    Eur Radiol; 2017 Feb; 27(2):589-597. PubMed ID: 27048528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques.
    Bathla G; Priya S; Liu Y; Ward C; Le NH; Soni N; Maheshwarappa RP; Monga V; Zhang H; Sonka M
    Eur Radiol; 2021 Nov; 31(11):8703-8713. PubMed ID: 33890149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning.
    Sanghani P; Ang BT; King NKK; Ren H
    Surg Oncol; 2018 Dec; 27(4):709-714. PubMed ID: 30449497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach.
    Zhang L; Liu X; Xu X; Liu W; Jia Y; Chen W; Fu X; Li Q; Sun X; Zhang Y; Shu S; Zhang X; Xiang R; Chen H; Sun P; Geng D; Yu Z; Liu J; Wang J
    Eur J Radiol; 2023 Jan; 158():110639. PubMed ID: 36463703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme.
    Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z
    Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response.
    Hussain L; Huang P; Nguyen T; Lone KJ; Ali A; Khan MS; Li H; Suh DY; Duong TQ
    Biomed Eng Online; 2021 Jun; 20(1):63. PubMed ID: 34183038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.