These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33533308)

  • 21. Flow over a ski jumper in flight: Prediction of the aerodynamic force and flight posture with higher lift-to-drag ratio.
    Kim W; Lee H; Lee J; Jung D; Choi H
    J Biomech; 2019 May; 89():78-84. PubMed ID: 31043228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Key transition technology of ski jumping based on inertial motion unit, kinematics and dynamics.
    Yu J; Ma X; Qi S; Liang Z; Wei Z; Li Q; Ni W; Wei S; Zhang S
    Biomed Eng Online; 2023 Mar; 22(1):21. PubMed ID: 36864414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of body angles on the aerodynamic characteristics in the flight period of ski jumping: a simulation study.
    Li X; Wang X; Chen L; Zhao T
    Sports Biomech; 2023 Oct; ():1-15. PubMed ID: 37876232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A heuristic model-based approach for compensating wind effects in ski jumping.
    Jung A; Müller W; Virmavirta M
    J Biomech; 2021 Aug; 125():110585. PubMed ID: 34233216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of posture on the aerodynamic characteristics during take-off in ski jumping.
    Yamamoto K; Tsubokura M; Ikeda J; Onishi K; Baleriola S
    J Biomech; 2016 Nov; 49(15):3688-3696. PubMed ID: 27743629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of human flight on skis: improvements in safety and fairness in ski jumping.
    Müller W; Platzer D; Schmölzer B
    J Biomech; 1996 Aug; 29(8):1061-8. PubMed ID: 8817373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental Validation of Real-Time Ski Jumping Tracking System Based on Wearable Sensors.
    Link J; Guillaume S; Eskofier BM
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EMG activities and plantar pressures during ski jumping take-off on three different sized hills.
    Virmavirta M; Perttunen J; Komi PV
    J Electromyogr Kinesiol; 2001 Apr; 11(2):141-7. PubMed ID: 11228427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards more valid simulations of slopestyle and big air jumps: Aerodynamics during in-run and flight phase.
    Wolfsperger F; Meyer F; Gilgien M
    J Sci Med Sport; 2021 Oct; 24(10):1082-1087. PubMed ID: 34059467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical agreement between different imitation jumps and hill jumps in ski jumping.
    Ketterer J; Gollhofer A; Lauber B
    Scand J Med Sci Sports; 2021 Jan; 31(1):115-123. PubMed ID: 32969534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Injuries in elite women's ski jumping: a cohort study following three International Ski Federation (FIS) World Cup seasons from 2017-2018 to 2019-2020.
    Stenseth OMR; Barli SF; Martin RK; Engebretsen L
    Br J Sports Med; 2022 Jan; 56(1):35-40. PubMed ID: 34893472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical study of transient aerodynamic forces acting on a ski jumper considering dynamic posture change from takeoff to landing.
    Yamamoto K; Nishino T; Bale R; Shimada T; Miyamoto N; Tsubokura M
    Sports Biomech; 2022 Dec; ():1-15. PubMed ID: 36510445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Musculoskeletal simulation of professional ski jumpers during take-off considering aerodynamic forces.
    Huang Y; Jiang L; Chen X; Sun Q; Zhang X; Tan X; Du Y; Zhang F; Wang N; Su R; Qu F; Zhang G; Huo B
    Front Bioeng Biotechnol; 2023; 11():1241135. PubMed ID: 37720321
    [No Abstract]   [Full Text] [Related]  

  • 34. Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system.
    Chardonnens J; Favre J; Cuendet F; Gremion G; Aminian K
    J Sports Sci; 2014; 32(6):591-600. PubMed ID: 24117224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanics research in ski jumping, 1991-2006.
    Schwameder H
    Sports Biomech; 2008 Jan; 7(1):114-36. PubMed ID: 18341140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wind and fairness in ski jumping: A computer modelling analysis.
    Jung A; Müller W; Staat M
    J Biomech; 2018 Jun; 75():147-153. PubMed ID: 29803308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imitation jumps in ski jumping: Technical execution and relationship to performance level.
    Ettema G; Braaten S; Danielsen J; Fjeld BE
    J Sports Sci; 2020 Sep; 38(18):2155-2160. PubMed ID: 32543286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinematic analysis of the flight phase of the Nordic combined and ski jump on a large hill (HS-134 m) during the 2009 Nordic World Ski Championships.
    Svoboda Z; Janura M; Cabell L; Janurová E
    Acta Bioeng Biomech; 2011; 13(1):19-25. PubMed ID: 21500760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical aspects of new techniques in alpine skiing and ski-jumping.
    Müller E; Schwameder H
    J Sports Sci; 2003 Sep; 21(9):679-92. PubMed ID: 14579866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. xLength: Predicting Expected Ski Jump Length Shortly after Take-Off Using Deep Learning.
    Link J; Schwinn L; Pulsmeyer F; Kautz T; Eskofier BM
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.