These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33533426)

  • 1. Arsenic in Sediments, Soil and Plants in a Remediated Area of the Iron Quadrangle, Brazil, and its Accumulation and Biotransformation in Eleocharis geniculata.
    Menezes MĂBC; Falnoga I; Ĺ Lejkovec Z; JaÄ imoviÄ R; Couto N; Deschamps E; Faganeli J
    Acta Chim Slov; 2020 Sep; 67(3):985-991. PubMed ID: 33533426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation, translocation and conversion of six arsenic species in rice plants grown near a mine impacted city.
    Ma L; Wang L; Jia Y; Yang Z
    Chemosphere; 2017 Sep; 183():44-52. PubMed ID: 28531558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of pepper plants (Capsicum annum L.) on soil amendment by inorganic and organic compounds of arsenic.
    Száková J; Tlustos P; Goessler W; Pavlíková D; Schmeisser E
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):38-46. PubMed ID: 17031752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation of As(III), As(V), MMA and DMA in contaminated soil extracts by HPLC-ICP/MS.
    Bissen M; Frimmel FH
    Fresenius J Anal Chem; 2000 May; 367(1):51-5. PubMed ID: 11227433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure assessment for the abandoned metal mine area contaminated by arsenic.
    Chang JY; Ahn SC; Lee JS; Kim JY; Jung AR; Park J; Choi JW; Do Yu S
    Environ Geochem Health; 2019 Dec; 41(6):2443-2458. PubMed ID: 31016607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities.
    García-Salgado S; Quijano MÁ
    Environ Sci Process Impacts; 2014 Mar; 16(3):604-12. PubMed ID: 24513726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylated arsenic species in plants originate from soil microorganisms.
    Lomax C; Liu WJ; Wu L; Xue K; Xiong J; Zhou J; McGrath SP; Meharg AA; Miller AJ; Zhao FJ
    New Phytol; 2012 Feb; 193(3):665-672. PubMed ID: 22098145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of arsenic in foodstuffs on the people living in the arsenic-affected areas of West Bengal, India.
    Mandal BK; Suzuki KT; Anzai K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Oct; 42(12):1741-52. PubMed ID: 17952775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of arsenic speciation and the possible source of methylated arsenic in Panax Notoginseng.
    Zhu M; Zeng X; Jiang Y; Fan X; Chao S; Cao H; Zhang W
    Chemosphere; 2017 Feb; 168():1677-1683. PubMed ID: 27932037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation.
    Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG
    Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils.
    Turpeinen R; Pantsar-Kallio M; Kairesalo T
    Sci Total Environ; 2002 Feb; 285(1-3):133-45. PubMed ID: 11874036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation.
    de Mello JW; Talbott JL; Scott J; Roy WR; Stucki JW
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):388-96. PubMed ID: 17993222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Transformation of exogenous dimethyl arsenic in soil].
    Zeng XB; Hu LJ; Bai LY; Li LF; He QH; Su SM
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3207-11. PubMed ID: 21443010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic fractionation in sediments and speciation in muscles of fish, Chrysichthys nigrodigitatus from a contaminated tropical Lagoon, Nigeria.
    Usese AI; Chukwu LO; Naidu R; Islam S; Rahman MM
    Chemosphere; 2020 Oct; 256():127134. PubMed ID: 32460163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of River Water and Bottom Sediment Pollution on Accumulation of Metal(loid)s and Arsenic Species in the Coastal Plants Stuckenia pectinata L., Galium aparine L., and Urtica dioica L.: A Chemometric and Environmental Study.
    Jabłońska-Czapla M; Zerzucha P; Grygoyć K
    Arch Environ Contam Toxicol; 2020 Jul; 79(1):60-79. PubMed ID: 32285162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic speciation in the bracket fungus Fomitopsis betulina from contaminated and pristine sites.
    Button M; Koch I; Watts MJ; Reimer KJ
    Environ Geochem Health; 2020 Sep; 42(9):2723-2732. PubMed ID: 31897873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere.
    Kuramata M; Sakakibara F; Kataoka R; Abe T; Asano M; Baba K; Takagi K; Ishikawa S
    Environ Microbiol; 2015 Jun; 17(6):1897-909. PubMed ID: 25039305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Variations of arsenic species in the solution of arsenic-contaminated paddy soil under flooding and at different temperatures].
    Wang Z; Cui JH; Chen Z; Lu XJ; Liu WJ
    Ying Yong Sheng Tai Xue Bao; 2013 May; 24(5):1415-22. PubMed ID: 24015564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.).
    Tu C; Ma LQ; Zhang W; Cai Y; Harris WG
    Environ Pollut; 2003; 124(2):223-30. PubMed ID: 12713922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic speciation in municipal landfill leachate.
    Li Y; Low GK; Scott JA; Amal R
    Chemosphere; 2010 May; 79(8):794-801. PubMed ID: 20363013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.