These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 33533504)
1. Comparison between surface electrodes and ultrasound monitoring to measure TMS evoked muscle contraction. Kaczmarczyk I; Rawji V; Rothwell JC; Hodson-Tole E; Sharma N Muscle Nerve; 2021 May; 63(5):724-729. PubMed ID: 33533504 [TBL] [Abstract][Full Text] [Related]
2. Decoding firings of a large population of human motor units from high-density surface electromyogram in response to transcranial magnetic stimulation. Škarabot J; Ammann C; Balshaw TG; Divjak M; Urh F; Murks N; Foffani G; Holobar A J Physiol; 2023 May; 601(10):1719-1744. PubMed ID: 36946417 [TBL] [Abstract][Full Text] [Related]
3. Differentiation of motor evoked potentials elicited from multiple forearm muscles: An investigation with high-density surface electromyography. Neva JL; Gallina A; Peters S; Garland SJ; Boyd LA Brain Res; 2017 Dec; 1676():91-99. PubMed ID: 28935187 [TBL] [Abstract][Full Text] [Related]
4. Functional demanded excitability changes of human hand motor area. Ni Z; Takahashi M; Yamashita T; Liang N; Tanaka Y; Tsuji T; Yahagi S; Kasai T Exp Brain Res; 2006 Apr; 170(2):141-8. PubMed ID: 16328281 [TBL] [Abstract][Full Text] [Related]
5. Superconditioning TMS for examining upper motor neuron function in MND. Calancie B; Young E; Watson ML; Wang D; Alexeeva N Exp Brain Res; 2019 Aug; 237(8):2087-2103. PubMed ID: 31175383 [TBL] [Abstract][Full Text] [Related]
6. Factors influencing the relation between corticospinal output and muscle force during voluntary contractions. Gelli F; Del Santo F; Popa T; Mazzocchio R; Rossi A Eur J Neurosci; 2007 Jun; 25(11):3469-75. PubMed ID: 17553016 [TBL] [Abstract][Full Text] [Related]
7. Effects of remote muscle contraction on transcranial magnetic stimulation-induced motor evoked potentials and silent periods in humans. Tazoe T; Sakamoto M; Nakajima T; Endoh T; Komiyama T Clin Neurophysiol; 2007 Jun; 118(6):1204-12. PubMed ID: 17449319 [TBL] [Abstract][Full Text] [Related]
8. Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions. Liang N; Murakami T; Funase K; Narita T; Kasai T Neurosci Lett; 2008 Mar; 433(2):135-40. PubMed ID: 18261851 [TBL] [Abstract][Full Text] [Related]
9. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans. Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466 [TBL] [Abstract][Full Text] [Related]
10. Motor potential evoked by transcranial magnetic stimulation depends on the placement protocol of recording electrodes: a pilot study. Garcia MAC; Souza VH; Lindolfo-Almas J; Matsuda RH; Nogueira-Campos AA Biomed Phys Eng Express; 2020 Jun; 6(4):047003. PubMed ID: 33444285 [TBL] [Abstract][Full Text] [Related]
11. Cortico-motoneuronal output to intrinsic hand muscles is differentially influenced by static changes in shoulder positions. Dominici F; Popa T; Ginanneschi F; Mazzocchio R; Rossi A Exp Brain Res; 2005 Aug; 164(4):500-4. PubMed ID: 15883808 [TBL] [Abstract][Full Text] [Related]
12. Hysteresis effects on the input-output curve of motor evoked potentials. Möller C; Arai N; Lücke J; Ziemann U Clin Neurophysiol; 2009 May; 120(5):1003-8. PubMed ID: 19329358 [TBL] [Abstract][Full Text] [Related]
13. Influence of sensory deprivation and perturbation of trigeminal afferent fibers on corticomotor control of human tongue musculature. Halkjaer L; Melsen B; McMillan AS; Svensson P Exp Brain Res; 2006 Apr; 170(2):199-205. PubMed ID: 16328282 [TBL] [Abstract][Full Text] [Related]
14. Lateralized asymmetries in distribution of muscular evoked responses: An evidence of specialized motor control over an intrinsic hand muscle. Souza VH; Baffa O; Garcia MAC Brain Res; 2018 Apr; 1684():60-66. PubMed ID: 29408387 [TBL] [Abstract][Full Text] [Related]
15. Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris. Temesi J; Gruet M; Rupp T; Verges S; Millet GY J Neuroeng Rehabil; 2014 Mar; 11():40. PubMed ID: 24655366 [TBL] [Abstract][Full Text] [Related]
17. Comparison between short train, monophasic and biphasic repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex. Arai N; Okabe S; Furubayashi T; Terao Y; Yuasa K; Ugawa Y Clin Neurophysiol; 2005 Mar; 116(3):605-13. PubMed ID: 15721074 [TBL] [Abstract][Full Text] [Related]
18. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles. Perez MA; Lundbye-Jensen J; Nielsen JB J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616 [TBL] [Abstract][Full Text] [Related]
19. Further insight into the task-dependent excitability of motor evoked potentials in first dorsal interosseous muscle in humans. Hasegawa Y; Kasai T; Tsuji T; Yahagi S Exp Brain Res; 2001 Oct; 140(4):387-96. PubMed ID: 11685391 [TBL] [Abstract][Full Text] [Related]
20. Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation. Sidhu SK; Bentley DJ; Carroll TJ Muscle Nerve; 2009 Feb; 39(2):186-96. PubMed ID: 19034956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]