These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33533610)

  • 1. Genetic Algorithms to Automate the Design of Metasurfaces for Absorption Bandwidth Broadening.
    Zhang J; Wang G; Wang T; Li F
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7792-7800. PubMed ID: 33533610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Broadening of Single-Layer Metasurface Bandwidth by Coupling Resonances.
    Fernández Álvarez H; de Cos Gómez ME; Las-Heras Andrés F
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32365718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods.
    Ji W; Chang J; Xu HX; Gao JR; Gröblacher S; Urbach HP; Adam AJL
    Light Sci Appl; 2023 Jul; 12(1):169. PubMed ID: 37419910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wideband RCS Reduction Using Coding Diffusion Metasurface.
    Ali L; Li Q; Khan TA; Yi J; Chen X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metasurface Salisbury screen: achieving ultra-wideband microwave absorption.
    Zhou Z; Chen K; Zhao J; Chen P; Jiang T; Zhu B; Feng Y; Li Y
    Opt Express; 2017 Nov; 25(24):30241-30252. PubMed ID: 29221055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intelligent design of the chiral metasurfaces for flexible targets: combining a deep neural network with a policy proximal optimization algorithm.
    Liao X; Gui L; Gao A; Yu Z; Xu K
    Opt Express; 2022 Oct; 30(22):39582-39596. PubMed ID: 36298906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Design of Miniaturized Reflecting Metasurfaces for Ultra-Wideband and Angularly Stable Polarization Conversion.
    Borgese M; Costa F; Genovesi S; Monorchio A; Manara G
    Sci Rep; 2018 May; 8(1):7651. PubMed ID: 29769556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A knowledge-inherited learning for intelligent metasurface design and assembly.
    Jia Y; Qian C; Fan Z; Cai T; Li EP; Chen H
    Light Sci Appl; 2023 Mar; 12(1):82. PubMed ID: 36997520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonplanar metasurface for perfect absorption of sound waves.
    Kim J; Jeon W
    J Acoust Soc Am; 2021 Apr; 149(4):2323. PubMed ID: 33940914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-dense moving cascaded metasurface holography by using a physics-driven neural network.
    Zhou H; Li X; Wang H; Zhang S; Su Z; Jiang Q; Ullah N; Li X; Wang Y; Huang L
    Opt Express; 2022 Jul; 30(14):24285-24294. PubMed ID: 36236986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive Genetic Algorithm for Optical Metasurfaces Design.
    Jafar-Zanjani S; Inampudi S; Mosallaei H
    Sci Rep; 2018 Jul; 8(1):11040. PubMed ID: 30038394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research Progress of Electromagnetic Metasurface Used for Radar Cross Section Reduction in Microwave and Terahertz Wave].
    Yan X; LIang LJ; Zhang YT; Ding X; Yao JQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1639-44. PubMed ID: 30052363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Learning Optimisation of Binary Coded Metasurface Consisting of Wideband Meta-Atoms.
    Chittur Subramanianprasad P; Ma Y; Ihalage AA; Hao Y
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband efficient anomalous reflection using an aggressively discretized metasurface.
    Qi C; Wong AMH
    Opt Express; 2022 Apr; 30(9):15735-15746. PubMed ID: 35473287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Demand Design of Metasurfaces through Multineural Network Fusion.
    Li J; Yang C; Qinhua A; Lan Q; Yun L; Xia Y
    ACS Appl Mater Interfaces; 2024 Sep; 16(37):49673-49686. PubMed ID: 39231373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metasurface holograms reaching 80% efficiency.
    Zheng G; Mühlenbernd H; Kenney M; Li G; Zentgraf T; Zhang S
    Nat Nanotechnol; 2015 Apr; 10(4):308-12. PubMed ID: 25705870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluidically Switchable Metasurface for Wide Spectrum Absorption.
    Ghosh S; Lim S
    Sci Rep; 2018 Jul; 8(1):10169. PubMed ID: 29976940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metasurface parameter optimization of Fano resonance based on a BP-PSO algorithm.
    Chen Y; Ding Z; Zhang M; Zhou J; Li M; Zhao M; Wang J
    Appl Opt; 2021 Oct; 60(29):9200-9204. PubMed ID: 34624002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-based metasurface solar absorber design with absorption prediction using machine learning.
    Parmar J; Patel SK; Katkar V
    Sci Rep; 2022 Feb; 12(1):2609. PubMed ID: 35173249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design.
    Qiu T; Shi X; Wang J; Li Y; Qu S; Cheng Q; Cui T; Sui S
    Adv Sci (Weinh); 2019 Jun; 6(12):1900128. PubMed ID: 31380164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.