BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33533616)

  • 1. Nanoscale Architecture of Polymer-Organolead Halide Perovskite Films and the Effect of Polymer Chain Mobility on Device Performance.
    Mathur A; Li A; Maheshwari V
    J Phys Chem Lett; 2021 Feb; 12(5):1481-1489. PubMed ID: 33533616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic-Hydrophilic Block Copolymer Mediated Tuning of Halide Perovskite Photosensitive Device Stability and Efficiency.
    Mathur A; Li A; Maheshwari V
    ACS Appl Mater Interfaces; 2023 May; 15(21):25932-25941. PubMed ID: 37196351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft Polymer-Organolead Halide Perovskite Films for Highly Stretchable and Durable Photodetectors with Pt-Au Nanochain-Based Electrodes.
    Mathur A; Fan H; Maheshwari V
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58956-58965. PubMed ID: 34851102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer-Controlled Growth and Wrapping of Perovskite Single Crystals Leading to Better Device Stability and Performance.
    Saraf R; Mathur A; Maheshwari V
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25011-25019. PubMed ID: 32388977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.
    Li D; Wu H; Cheng HC; Wang G; Huang Y; Duan X
    ACS Nano; 2016 Jul; 10(7):6933-41. PubMed ID: 27315525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Perovskite Heterostructures by Ion Exchange.
    Shewmon NT; Yu H; Constantinou I; Klump E; So F
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33273-33279. PubMed ID: 27934163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius.
    Choi J; Le QV; Hong K; Moon CW; Han JS; Kwon KC; Cha PR; Kwon Y; Kim SY; Jang HW
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30764-30771. PubMed ID: 28825292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells.
    Gratia P; Grancini G; Audinot JN; Jeanbourquin X; Mosconi E; Zimmermann I; Dowsett D; Lee Y; Grätzel M; De Angelis F; Sivula K; Wirtz T; Nazeeruddin MK
    J Am Chem Soc; 2016 Dec; 138(49):15821-15824. PubMed ID: 27960332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarized Ferroelectric Polymers for High-Performance Perovskite Solar Cells.
    Zhang CC; Wang ZK; Yuan S; Wang R; Li M; Jimoh MF; Liao LS; Yang Y
    Adv Mater; 2019 Jul; 31(30):e1902222. PubMed ID: 31165530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells.
    Zhou Y; Yang M; Game OS; Wu W; Kwun J; Strauss MA; Yan Y; Huang J; Zhu K; Padture NP
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2232-7. PubMed ID: 26726763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Moisture-Based Grain Boundary Passivation on Cell Performance and Ionic Migration in Organic-Inorganic Halide Perovskite Solar Cells.
    Hoque MNF; He R; Warzywoda J; Fan Z
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30322-30329. PubMed ID: 30118195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulk Heterojunction-Assisted Grain Growth for Controllable and Highly Crystalline Perovskite Films.
    Liu Y; Shin I; Ma Y; Hwang IW; Jung YK; Jang JW; Jeong JH; Park SH; Kim KH
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31366-31373. PubMed ID: 30152673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells.
    Yang J; Xiong S; Qu T; Zhang Y; He X; Guo X; Zhao Q; Braun S; Chen J; Xu J; Li Y; Liu X; Duan C; Tang J; Fahlman M; Bao Q
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13491-13498. PubMed ID: 30880387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Making and Breaking of Lead Halide Perovskites.
    Manser JS; Saidaminov MI; Christians JA; Bakr OM; Kamat PV
    Acc Chem Res; 2016 Feb; 49(2):330-8. PubMed ID: 26789596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance CH
    Jahandar M; Khan N; Lee HK; Lee SK; Shin WS; Lee JC; Song CE; Moon SJ
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35871-35879. PubMed ID: 28948770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gate-Induced Insulator to Band-Like Transport Transition in Organolead Halide Perovskite.
    Li D; Cheng HC; Wu H; Wang Y; Guo J; Wang G; Huang Y; Duan X
    J Phys Chem Lett; 2017 Jan; 8(2):429-434. PubMed ID: 28050909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Structure of Nonionic Surfactant-Modified PEDOT:PSS and Its Application in Perovskite Solar Cells with Reduced Interface Recombination.
    Shin D; Kang D; Lee JB; Ahn JH; Cho IW; Ryu MY; Cho SW; Jung NE; Lee H; Yi Y
    ACS Appl Mater Interfaces; 2019 May; 11(18):17028-17034. PubMed ID: 30990013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perovskite-Initiated Photopolymerization for Singly Dispersed Luminescent Nanocomposites.
    Wong YC; De Andrew Ng J; Tan ZK
    Adv Mater; 2018 May; 30(21):e1800774. PubMed ID: 29638013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the Charge Extraction Mechanism of Perovskite Solar Cells Fabricated with Two-Step Spin Coating: Interfacial Energetics between Methylammonium Lead Iodide and C
    Shin D; Kang D; Jeong J; Park S; Kim M; Lee H; Yi Y
    J Phys Chem Lett; 2017 Nov; 8(21):5423-5429. PubMed ID: 29057656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance.
    Liu C; Huang Z; Hu X; Meng X; Huang L; Xiong J; Tan L; Chen Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):1909-1916. PubMed ID: 29271205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.