BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 3353366)

  • 1. Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis.
    Kohl DH; Schubert KR; Carter MB; Hagedorn CH; Shearer G
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2036-40. PubMed ID: 3353366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A soybean gene encoding delta 1-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated.
    Delauney AJ; Verma DP
    Mol Gen Genet; 1990 May; 221(3):299-305. PubMed ID: 2199815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activities of the pentose phosphate pathway and enzymes of proline metabolism in legume root nodules.
    Kohl DH; Lin JJ; Shearer G; Schubert KR
    Plant Physiol; 1990 Nov; 94(3):1258-64. PubMed ID: 16667826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linkage of the HMP pathway to ATP generation by the proline cycle.
    Phang JM; Downing SJ; Yeh GC
    Biochem Biophys Res Commun; 1980 Mar; 93(2):462-70. PubMed ID: 6892988
    [No Abstract]   [Full Text] [Related]  

  • 5. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrroline-5-carboxylate reductase and proline oxidase activity in the neonatal pig.
    Samuels SE; Acton KS; Ball RO
    J Nutr; 1989 Dec; 119(12):1999-2004. PubMed ID: 2621492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of proline in Pseudomonas aeruginosa. Properties of gamma-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase.
    Krishna RV; Beilstein P; Leisinger T
    Biochem J; 1979 Jul; 181(1):223-30. PubMed ID: 114173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of levels of proline as an osmolyte in plants under water stress.
    Yoshiba Y; Kiyosue T; Nakashima K; Yamaguchi-Shinozaki K; Shinozaki K
    Plant Cell Physiol; 1997 Oct; 38(10):1095-102. PubMed ID: 9399433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrroline-5-Carboxylate Reductase in Soybean Nodules : Comparison of the Enzymes in Host Cytosol, Bradyrhizobium japonicum Bacteroids, and Cultures.
    Chilson OP; Kelly-Chilson AE; Schneider JD
    Plant Physiol; 1992 May; 99(1):119-23. PubMed ID: 16668837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic properties of the purified putA protein from Salmonella typhimurium.
    Menzel R; Roth J
    J Biol Chem; 1981 Sep; 256(18):9762-6. PubMed ID: 6270101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Δ1-Pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate.
    Giberti S; Funck D; Forlani G
    New Phytol; 2014 May; 202(3):911-919. PubMed ID: 24467670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of pyrroline carboxylate reductase and proline oxidase in the larva of the blowfly, Aldrichina grahami.
    Tsuyama S; Higashino T; Miura K
    Experientia; 1980 Sep; 36(9):1037-8. PubMed ID: 6893438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymes metabolizing ornithine-proline pathway in the bovine eye.
    Hayasaka S; Matsuzawa T; Shiono T; Mizuno K; Ishiguro I
    Exp Eye Res; 1982 Apr; 34(4):635-8. PubMed ID: 6896186
    [No Abstract]   [Full Text] [Related]  

  • 14. Molecular cloning and evidence for osmoregulation of the delta 1-pyrroline-5-carboxylate reductase (proC) gene in pea (Pisum sativum L.).
    Williamson CL; Slocum RD
    Plant Physiol; 1992; 100(3):1464-70. PubMed ID: 11537868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular compartmentation in control of converging pathways for proline and arginine metabolism in Saccharomyces cerevisiae.
    Brandriss MC; Magasanik B
    J Bacteriol; 1981 Mar; 145(3):1359-64. PubMed ID: 7009582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Schistosomiasis: proline production and release by ova.
    Isseroff H; Bock K; Owczarek A; Smith KR
    J Parasitol; 1983 Apr; 69(2):285-9. PubMed ID: 6687901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of a NADPH-linked delta 1-pyrroline-5-carboxylate-proline shuttle in a cell-free rat liver system.
    Hagedorn CH
    Biochim Biophys Acta; 1986 Oct; 884(1):11-7. PubMed ID: 3768405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reassessment of major products of N2 fixation by bacteroids from soybean root nodules.
    Li Y; Parsons R; Day DA; Bergersen FJ
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1959-1966. PubMed ID: 12055315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Utilization of nitrate by bacteroids and cytosol of nodules formed by Rhizobium leguminosarum].
    Fernández-López M; Delgado MJ; Olivares J; Bedmar EJ
    Microbiologia; 1989 Jun; 5(1):13-23. PubMed ID: 2803636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of proline catabolism in Pseudomonas aeruginosa PAO.
    Meile L; Soldati L; Leisinger T
    Arch Microbiol; 1982 Aug; 132(2):189-93. PubMed ID: 6812528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.