These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 33534578)
1. Nonlinear Band Gap Dependence of Mixed Pb-Sn 2D Ruddlesden-Popper PEA Underwood CCL; Carey JD; Silva SRP J Phys Chem Lett; 2021 Feb; 12(5):1501-1506. PubMed ID: 33534578 [TBL] [Abstract][Full Text] [Related]
2. Unravelling Structural, Optical, and Band Alignment Properties of Mixed Pb-Sn Metal-Halide Quasi-2D Ruddlesden-Popper Perovskites. Deshpande SS; Saykar NG; Mandal A; Rahane S; Jadhav YA; Upadhyay Kahaly M; Nagy GN; Shinde A; Suresh S; Rondiya SR Langmuir; 2024 Aug; 40(31):16180-16189. PubMed ID: 39069666 [TBL] [Abstract][Full Text] [Related]
3. Tuning Electronic and Structural Properties of Lead-Free Metal Halide Perovskites: A Comparative Study of 2D Ruddlesden-Popper and 3D Compositions. Dalmedico JF; Silveira DN; O de Araujo L; Wenzel W; Rêgo CRC; Dias AC; Guedes-Sobrinho D; Piotrowski MJ Chemphyschem; 2024 Aug; 25(16):e202400118. PubMed ID: 38742372 [TBL] [Abstract][Full Text] [Related]
4. Band-Gap Tuning in All-Inorganic CsPb Schwartz HA; Laurenzen H; Marzouk A; Runkel M; Brinkmann KO; Rogalla D; Riedl T; Ashhab S; Olthof S ACS Appl Mater Interfaces; 2021 Jan; 13(3):4203-4210. PubMed ID: 33435668 [TBL] [Abstract][Full Text] [Related]
5. Structure-Electronic Property Relationships of 2D Ruddlesden-Popper Tin- and Lead-based Iodide Perovskites. Zibouche N; Islam MS ACS Appl Mater Interfaces; 2020 Apr; 12(13):15328-15337. PubMed ID: 32159945 [TBL] [Abstract][Full Text] [Related]
6. Chemical Behavior and Local Structure of the Ruddlesden-Popper and Dion-Jacobson Alloyed Pb/Sn Bromide 2D Perovskites. Fu P; Quintero MA; Vasileiadou ES; Raval P; Welton C; Kepenekian M; Volonakis G; Even J; Liu Y; Malliakas C; Yang Y; Laing C; Dravid VP; Reddy GNM; Li C; Sargent EH; Kanatzidis MG J Am Chem Soc; 2023 Jul; 145(29):15997-16014. PubMed ID: 37432784 [TBL] [Abstract][Full Text] [Related]
7. Vapor Growth of All-Inorganic 2D Ruddlesden-Popper Lead- and Tin-Based Perovskites. Shuai X; Sidhik S; Xu M; Zhang X; De Siena M; Pedesseau L; Zhang H; Gao G; Puthirath AB; Li W; Agrawal A; Xu J; Hou J; Persaud JH; Daum J; Mishra A; Wang Y; Vajtai R; Katan C; Kanatzidis MG; Even J; Ajayan PM; Mohite AD ACS Appl Mater Interfaces; 2024 Sep; 16(35):46560-46569. PubMed ID: 39175462 [TBL] [Abstract][Full Text] [Related]
8. Over-18%-Efficiency Quasi-2D Ruddlesden-Popper Pb-Sn Mixed Perovskite Solar Cells by Compositional Engineering. Qin Z; Pols M; Qin M; Zhang J; Yan H; Tao S; Lu X ACS Energy Lett; 2023 Jul; 8(7):3188-3195. PubMed ID: 37469391 [TBL] [Abstract][Full Text] [Related]
9. Highly Enhanced Third-Harmonic Generation in 2D Perovskites at Excitonic Resonances. Abdelwahab I; Grinblat G; Leng K; Li Y; Chi X; Rusydi A; Maier SA; Loh KP ACS Nano; 2018 Jan; 12(1):644-650. PubMed ID: 29261278 [TBL] [Abstract][Full Text] [Related]
10. Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Ma L; Ju MG; Dai J; Zeng XC Nanoscale; 2018 Jun; 10(24):11314-11319. PubMed ID: 29897093 [TBL] [Abstract][Full Text] [Related]
11. Emergence of Rashba-/Dresselhaus effects in Ruddlesden-Popper halide perovskites with octahedral rotations. Krach S; Forero-Correa N; Biega RI; Reyes-Lillo SE; Leppert L J Phys Condens Matter; 2023 Mar; 35(17):. PubMed ID: 36806018 [TBL] [Abstract][Full Text] [Related]
12. First-principles study of lead-free Ge-based 2D Ruddlesden-Popper hybrid perovskites for solar cell applications. Babaei M; Ahmadi V; Darvish G Phys Chem Chem Phys; 2022 Sep; 24(35):21052-21060. PubMed ID: 36004762 [TBL] [Abstract][Full Text] [Related]
13. Phase Engineering in Quasi-2D Ruddlesden-Popper Perovskites. Chen Y; Yu S; Sun Y; Liang Z J Phys Chem Lett; 2018 May; 9(10):2627-2631. PubMed ID: 29709184 [TBL] [Abstract][Full Text] [Related]
14. Enhanced optical absorption in two-dimensional Ruddlesden-Popper (C Zhao WH; Liang Z; Liu YZ; Deng ZQ; Ouyang YL; Tan R; Yao YS; Wei XL; Tang ZK Dalton Trans; 2023 Aug; 52(32):11067-11075. PubMed ID: 37523155 [TBL] [Abstract][Full Text] [Related]
16. Contrasting the stability, octahedral distortions, and optoelectronic properties of 3D MABX Danelon JG; Santos RM; Dias AC; Da Silva JLF; Lima MP Phys Chem Chem Phys; 2024 Mar; 26(10):8469-8487. PubMed ID: 38410922 [TBL] [Abstract][Full Text] [Related]
17. 2D Ruddlesden-Popper Perovskites Microring Laser Array. Zhang H; Liao Q; Wu Y; Zhang Z; Gao Q; Liu P; Li M; Yao J; Fu H Adv Mater; 2018 Apr; 30(15):e1706186. PubMed ID: 29516558 [TBL] [Abstract][Full Text] [Related]
18. Ethylenediammonium-Based "Hollow" Pb/Sn Perovskites with Ideal Band Gap Yield Solar Cells with Higher Efficiency and Stability. Ke W; Spanopoulos I; Tu Q; Hadar I; Li X; Shekhawat GS; Dravid VP; Kanatzidis MG J Am Chem Soc; 2019 May; 141(21):8627-8637. PubMed ID: 31063361 [TBL] [Abstract][Full Text] [Related]
19. Unexpected bowing band evolution in an all-inorganic CsSn Xia Y; Chen Y; Luo T; Liang H; Gao Y; Xu X; Xie W; Liu P; Wang X; Zhao YJ; Shi T RSC Adv; 2020 Jul; 10(44):26407-26413. PubMed ID: 35519736 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and Characterization of 2D Layered Perovskites with a Gradient Band Gap. Lu J; Zhou C; Zheng F; Ghasemi M; Li Q; Lin KT; Jia B; Wen X ACS Appl Mater Interfaces; 2023 Aug; 15(30):36706-36715. PubMed ID: 37466342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]