These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 33534701)
1. Concurrent Estimation of Finger Flexion and Extension Forces Using Motoneuron Discharge Information. Zheng Y; Hu X IEEE Trans Biomed Eng; 2021 May; 68(5):1638-1645. PubMed ID: 33534701 [TBL] [Abstract][Full Text] [Related]
2. Dexterous Force Estimation during Finger Flexion and Extension Using Motor Unit Discharge Information. Zheng Y; Hu X Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3130-3133. PubMed ID: 33018668 [TBL] [Abstract][Full Text] [Related]
3. Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information. Zheng Y; Hu X Int J Neural Syst; 2021 Jun; 31(6):2150010. PubMed ID: 33541251 [TBL] [Abstract][Full Text] [Related]
4. Real-time isometric finger extension force estimation based on motor unit discharge information. Zheng Y; Hu X J Neural Eng; 2019 Oct; 16(6):066006. PubMed ID: 31234147 [TBL] [Abstract][Full Text] [Related]
5. Robust neural decoding for dexterous control of robotic hand kinematics. Fan J; Vargas L; Kamper DG; Hu X Comput Biol Med; 2023 Aug; 162():107139. PubMed ID: 37301095 [TBL] [Abstract][Full Text] [Related]
6. Concurrent and Continuous Prediction of Finger Kinetics and Kinematics via Motoneuron Activities. Roy R; Zheng Y; Kamper DG; Hu X IEEE Trans Biomed Eng; 2023 Jun; 70(6):1911-1920. PubMed ID: 37015495 [TBL] [Abstract][Full Text] [Related]
7. Finger Joint Angle Estimation Based on Motoneuron Discharge Activities. Dai C; Hu X IEEE J Biomed Health Inform; 2020 Mar; 24(3):760-767. PubMed ID: 31283514 [TBL] [Abstract][Full Text] [Related]
8. Concurrent Prediction of Dexterous Finger Flexion and Extension Force via Deep Forest. Fan J; Hu X Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083054 [TBL] [Abstract][Full Text] [Related]
9. Estimation of Finger Joint Angle Based on Neural Drive Extracted from High-Density Electromyography. Dai C; Cao Y; Hu X Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4820-4823. PubMed ID: 30441425 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Individual Finger Forces Based on Decoded Motoneuron Activities. Dai C; Cao Y; Hu X Ann Biomed Eng; 2019 Jun; 47(6):1357-1368. PubMed ID: 30834478 [TBL] [Abstract][Full Text] [Related]
11. A generic neural network model to estimate populational neural activity for robust neural decoding. Roy R; Xu F; Kamper DG; Hu X Comput Biol Med; 2022 May; 144():105359. PubMed ID: 35247763 [TBL] [Abstract][Full Text] [Related]
12. Prediction of Dexterous Finger Forces With Forearm Rotation Using Motoneuron Discharges. Zheng B; Li Y; Xu G; Wang G; Zheng Y IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1994-2004. PubMed ID: 38758613 [TBL] [Abstract][Full Text] [Related]
13. Unsupervised neural decoding for concurrent and continuous multi-finger force prediction. Meng L; Hu X Comput Biol Med; 2024 May; 173():108384. PubMed ID: 38554657 [TBL] [Abstract][Full Text] [Related]
14. Towards Efficient Neural Decoder for Dexterous Finger Force Predictions. Fan J; Hu X IEEE Trans Biomed Eng; 2024 Jun; 71(6):1831-1840. PubMed ID: 38215325 [TBL] [Abstract][Full Text] [Related]
15. Real-time finger force prediction via parallel convolutional neural networks: a preliminary study. Xu F; Zheng Y; Hu X Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3126-3129. PubMed ID: 33018667 [TBL] [Abstract][Full Text] [Related]
16. Finger Force Estimation Using Motor Unit Discharges Across Forearm Postures. Rubin N; Zheng Y; Huang H; Hu X IEEE Trans Biomed Eng; 2022 Sep; 69(9):2767-2775. PubMed ID: 35213304 [TBL] [Abstract][Full Text] [Related]
17. Decoding finger movement patterns from microscopic neural drive information based on deep learning. Zhao Y; Zhang X; Li X; Zhao H; Chen X; Chen X; Gao X Med Eng Phys; 2022 Jun; 104():103797. PubMed ID: 35641068 [TBL] [Abstract][Full Text] [Related]
18. Neuron selection based on deflection coefficient maximization for the neural decoding of dexterous finger movements. Kim YH; Thakor NV; Schieber MH; Kim HN IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):374-84. PubMed ID: 25347884 [TBL] [Abstract][Full Text] [Related]
19. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor. Dai C; Zheng Y; Hu X Front Neurol; 2018; 9():187. PubMed ID: 29628911 [TBL] [Abstract][Full Text] [Related]
20. A Generalized Framework for the Study of Spinal Motor Neurons Controlling the Human Hand During Dynamic Movements. Cakici AL; Osswald M; De Oliveira DS; Braun DI; Simpetru RC; Kinfe T; Eskofier BM; Del Vecchio A Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4115-4118. PubMed ID: 36085754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]