These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 33534819)
1. OCLSTM: Optimized convolutional and long short-term memory neural network model for protein secondary structure prediction. Zhao Y; Liu Y PLoS One; 2021; 16(2):e0245982. PubMed ID: 33534819 [TBL] [Abstract][Full Text] [Related]
2. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction. Guo Y; Li W; Wang B; Liu H; Zhou D BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331 [TBL] [Abstract][Full Text] [Related]
3. Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory. Yuan L; Ma Y; Liu Y Front Bioeng Biotechnol; 2023; 11():1051268. PubMed ID: 36860882 [TBL] [Abstract][Full Text] [Related]
4. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks. Guo Y; Wang B; Li W; Yang B J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785 [TBL] [Abstract][Full Text] [Related]
5. IGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure prediction. Görmez Y; Sabzekar M; Aydın Z Proteins; 2021 Oct; 89(10):1277-1288. PubMed ID: 33993559 [TBL] [Abstract][Full Text] [Related]
6. Prediction of 8-state protein secondary structures by a novel deep learning architecture. Zhang B; Li J; Lü Q BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707 [TBL] [Abstract][Full Text] [Related]
7. Deep Ensemble Learning with Atrous Spatial Pyramid Networks for Protein Secondary Structure Prediction. Guo Y; Wu J; Ma H; Wang S; Huang J Biomolecules; 2022 Jun; 12(6):. PubMed ID: 35740899 [TBL] [Abstract][Full Text] [Related]
8. Protein Secondary Structure Prediction Based on Data Partition and Semi-Random Subspace Method. Ma Y; Liu Y; Cheng J Sci Rep; 2018 Jun; 8(1):9856. PubMed ID: 29959372 [TBL] [Abstract][Full Text] [Related]
9. Prediction of protein secondary structure by the improved TCN-BiLSTM-MHA model with knowledge distillation. Zhao L; Li J; Zhan W; Jiang X; Zhang B Sci Rep; 2024 Jul; 14(1):16488. PubMed ID: 39020005 [TBL] [Abstract][Full Text] [Related]
10. DLBLS_SS: protein secondary structure prediction using deep learning and broad learning system. Yuan L; Hu X; Ma Y; Liu Y RSC Adv; 2022 Nov; 12(52):33479-33487. PubMed ID: 36505696 [TBL] [Abstract][Full Text] [Related]
11. ProteinUnet-An efficient alternative to SPIDER3-single for sequence-based prediction of protein secondary structures. Kotowski K; Smolarczyk T; Roterman-Konieczna I; Stapor K J Comput Chem; 2021 Jan; 42(1):50-59. PubMed ID: 33058261 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive Study on Enhancing Low-Quality Position-Specific Scoring Matrix with Deep Learning for Accurate Protein Structure Property Prediction: Using Bagging Multiple Sequence Alignment Learning. Guo Y; Wu J; Ma H; Wang S; Huang J J Comput Biol; 2021 Apr; 28(4):346-361. PubMed ID: 33617347 [No Abstract] [Full Text] [Related]
13. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility. Heffernan R; Yang Y; Paliwal K; Zhou Y Bioinformatics; 2017 Sep; 33(18):2842-2849. PubMed ID: 28430949 [TBL] [Abstract][Full Text] [Related]
14. MFTrans: A multi-feature transformer network for protein secondary structure prediction. Chen Y; Chen G; Chen CY Int J Biol Macromol; 2024 May; 267(Pt 1):131311. PubMed ID: 38599417 [TBL] [Abstract][Full Text] [Related]
15. IGPRED-MultiTask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibility. Gormez Y; Aydin Z IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1104-1113. PubMed ID: 35849663 [TBL] [Abstract][Full Text] [Related]
16. Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks. Gao T; Zhao Y; Zhang L; Wang H Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982795 [TBL] [Abstract][Full Text] [Related]
17. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway. Zhou J; Wang H; Zhao Z; Xu R; Lu Q BMC Bioinformatics; 2018 May; 19(Suppl 4):60. PubMed ID: 29745837 [TBL] [Abstract][Full Text] [Related]
18. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Adhikari B; Hou J; Cheng J Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185 [TBL] [Abstract][Full Text] [Related]
19. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. Wang S; Sun S; Li Z; Zhang R; Xu J PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090 [TBL] [Abstract][Full Text] [Related]
20. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks. Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y Bioinformatics; 2018 Dec; 34(23):4039-4045. PubMed ID: 29931279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]