These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3353504)

  • 1. Effects of sodium butyrate and 3-aminobenzamide on survival of Chinese hamster HA-1 cells after X irradiation.
    Leith JT
    Radiat Res; 1988 Apr; 114(1):186-91. PubMed ID: 3353504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of radiation injury in human colon tumor cells by the maturational agent sodium butyrate (NaB).
    Arundel CM; Glicksman AS; Leith JT
    Radiat Res; 1985 Dec; 104(3):443-8. PubMed ID: 4080986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of m-aminobenzamide on the response of Chinese hamster cells to hyperthermia and/or radiation.
    Miyakoshi J; Oda W; Inagaki C
    Radiat Res; 1985 Jun; 102(3):359-66. PubMed ID: 4070550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells.
    Hallows KR; Bliven SF; Leith JT
    Radiat Res; 1988 Jan; 113(1):191-8. PubMed ID: 3340722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitors of poly(adenosine diphosphoribose) synthetase, examination of metabolic perturbations, and enhancement of radiation response in Chinese hamster cells.
    Ben-Hur E; Chen CC; Elkind MM
    Cancer Res; 1985 May; 45(5):2123-7. PubMed ID: 2985245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in X-ray sensitivity and glutathione content of human colon tumor cells after exposure to the differentiation-inducing agent sodium butyrate.
    Leith JT; Hallows KT; Arundel CM; Bliven SF
    Radiat Res; 1988 Jun; 114(3):579-88. PubMed ID: 3375444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The effect of 3-aminobenzamide on the mitotic cycle of Chinese hamster cells cultured on a medium with 5-bromodeoxyuridine following ionizing radiation action].
    Kirillova TV; Rozanov IuM; Spivak IM
    Tsitologiia; 1992; 34(3):76-81. PubMed ID: 1440933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of PD 128763, a new potent inhibitor of poly(ADP-ribose) polymerase, on X-ray-induced cellular recovery processes in Chinese hamster V79 cells.
    Arundel-Suto CM; Scavone SV; Turner WR; Suto MJ; Sebolt-Leopold JS
    Radiat Res; 1991 Jun; 126(3):367-71. PubMed ID: 1903547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiosensitization of human fibroblasts by 3-aminobenzamide: an inhibitor of poly(ADP-ribosylation).
    Thraves P; Mossman KL; Brennan T; Dritschilo A
    Radiat Res; 1985 Nov; 104(2 Pt 1):119-27. PubMed ID: 3936114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ADP-ribose) synthetase inhibitors increase radiation and thermal sensitivity but do not affect thermotolerance.
    Raaphorst GP; Azzam EI
    Radiat Res; 1988 Dec; 116(3):442-52. PubMed ID: 3144719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sodium butyrate on the synthesis and methylation of DNA in normal cells and their transformed counterparts.
    de Haan JB; Gevers W; Parker MI
    Cancer Res; 1986 Feb; 46(2):713-6. PubMed ID: 2416432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small doses of high-linear energy transfer radiation increase the radioresistance of Chinese hamster V79 cells to subsequent X irradiation.
    Marples B; Skov KA
    Radiat Res; 1996 Oct; 146(4):382-7. PubMed ID: 8927710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of sodium butyrate on lymphokine production.
    Le Gros GS; Herbert AG; Watson JD
    Lymphokine Res; 1985; 4(3):221-7. PubMed ID: 3928980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A colony-stimulating factor for neutrophil granulocytes: a marked increase of its production by the addition of sodium butyrate and lipopolysaccharide in serum-free culture of RSP-2 X P3 cells.
    Tsuneoka K; Shikita M
    J Cell Physiol; 1985 Dec; 125(3):436-42. PubMed ID: 3877731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of the radioprotective effect of cysteamine].
    Gil'iano NIa; Malinovskiĭ OV; Stepanov SI
    Radiobiologiia; 1985; 25(2):238-41. PubMed ID: 4001324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance.
    Holahan EV; Highfield DP; Holahan PK; Dewey WC
    Radiat Res; 1984 Jan; 97(1):108-31. PubMed ID: 6695037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyfunctional radiosensitizers. VII. Radiosensitization by conformationally-restricted isomers of a nitroxyl biradical in vitro.
    Millar BC; Jenkins TC; Smithen CE; Jinks S
    Radiat Res; 1985 Jan; 101(1):111-22. PubMed ID: 3969438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of the radiation-sensitive phenotype of hamster irs1 and irs2 strains selected for resistance to 3-aminobenzamide.
    Ganesh A; Phillips E; Thacker J; Meuth M
    Int J Radiat Biol; 2001 May; 77(5):609-16. PubMed ID: 11382339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin decondensed by acetylation shows an elevated radiation response.
    Nackerdien Z; Michie J; Böhm L
    Radiat Res; 1989 Feb; 117(2):234-44. PubMed ID: 2922469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of butyrate, retinol, and retinoic acid on human Y-79 retinoblastoma cells growing in monolayer cultures.
    Kyritsis A; Joseph G; Chader GJ
    J Natl Cancer Inst; 1984 Sep; 73(3):649-54. PubMed ID: 6590911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.