These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33535529)

  • 1. Stable and Multilevel Data Storage Resistive Switching of Organic Bulk Heterojunction.
    Patil H; Kim H; Rehman S; Kadam KD; Aziz J; Khan MF; Kim DK
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33535529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable Resistive Switching in ZnO/PVA:MoS
    Sun T; Shi H; Gao S; Zhou Z; Yu Z; Guo W; Li H; Zhang F; Xu Z; Zhang X
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-Friendly Biomemristive Nonvolatile Memory: Harnessing Organic Waste for Sustainable Technology.
    Roy A; Kumari K; Majumder S; Ray SJ
    ACS Appl Bio Mater; 2024 Jul; ():. PubMed ID: 38976598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reset Voltage-Dependent Multilevel Resistive Switching Behavior in CsPb
    Ge S; Wang Y; Xiang Z; Cui Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24620-24626. PubMed ID: 29969009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lead-free, air-stable hybrid organic-inorganic perovskite resistive switching memory with ultrafast switching and multilevel data storage.
    Hwang B; Lee JS
    Nanoscale; 2018 May; 10(18):8578-8584. PubMed ID: 29694471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-processed light-induced multilevel non-volatile wearable memory device based on CsPb
    Paul T; Sarkar PK; Maiti S; Sahoo A; Chattopadhyay KK
    Dalton Trans; 2022 Mar; 51(10):3864-3874. PubMed ID: 35171172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Resistive Switching Behaviors and Mechanism of the W/ZnO/ITO Memory Cell.
    Yu Z; Jia J; Qu X; Wang Q; Kang W; Liu B; Xiao Q; Gao T; Xie Q
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Mediated Multilevel Flexible High-Efficiency Perovskite Resistive Switching Memory Based on Mn:CsPbCl
    Ran Q; Wang Y; Zhang W; Xu N; Chen W; Tang X
    J Phys Chem Lett; 2024 Feb; 15(6):1572-1578. PubMed ID: 38301605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Li-Doping Effect on Characteristics of ZnO Thin Films Resistive Random Access Memory.
    Zhao X; Song P; Gai H; Li Y; Ai C; Wen D
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 32987957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable and reliable IGZO resistive switching device with HfAlO
    Peng H; Liu H; Ma X; Cheng X
    Nanotechnology; 2023 Jun; 34(36):. PubMed ID: 37192603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compliance current controlled volatile and nonvolatile memory in Ag/CoFe
    Munjal S; Khare N
    Nanotechnology; 2021 Apr; 32(18):185204. PubMed ID: 33470980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored 2D/3D Halide Perovskite Heterointerface for Substantially Enhanced Endurance in Conducting Bridge Resistive Switching Memory.
    Lee S; Kim H; Kim DH; Kim WB; Lee JM; Choi J; Shin H; Han GS; Jang HW; Jung HS
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):17039-17045. PubMed ID: 32174107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and rupture of Ag conductive bridge in ZrO2-based resistive switching memory.
    Lin CC; Chang YP
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2437-41. PubMed ID: 22755070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive-bridging random access memory: challenges and opportunity for 3D architecture.
    Jana D; Roy S; Panja R; Dutta M; Rahaman SZ; Mahapatra R; Maikap S
    Nanoscale Res Lett; 2015; 10():188. PubMed ID: 25977660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cluster-Type Filaments Induced by Doping in Low-Operation-Current Conductive Bridge Random Access Memory.
    Sun Y; Song C; Yin S; Qiao L; Wan Q; Liu J; Wang R; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29481-29486. PubMed ID: 32490665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAPbBr
    Kim H; Kim JS; Choi J; Kim YH; Suh JM; Choi MJ; Shim YS; Kim SY; Lee TW; Jang HW
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2457-2466. PubMed ID: 38166386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Resistive Switching Performance through Air-Stable Cu
    Yuan Y; Wang Y; Tang X; Zhang N; Zhang W
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53990-53998. PubMed ID: 36413801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air-Stable Lead-Free Perovskite Thin Film Based on CsBi
    Xiong Z; Hu W; She Y; Lin Q; Hu L; Tang X; Sun K
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30037-30044. PubMed ID: 31342747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode.
    Kim JH; Nam KH; Hwang I; Cho WJ; Park B; Chung HB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9498-503. PubMed ID: 25971090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistive Switching Characteristics of Li-Doped ZnO Thin Films Based on Magnetron Sputtering.
    Zhao X; Li Y; Ai C; Wen D
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.