These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33535547)

  • 1. Advances in Cryochemistry: Mechanisms, Reactions and Applications.
    An LY; Dai Z; Di B; Xu LL
    Molecules; 2021 Feb; 26(3):. PubMed ID: 33535547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of freezing on reactions with environmental impact.
    O'Concubhair R; Sodeau JR
    Acc Chem Res; 2013 Nov; 46(11):2716-24. PubMed ID: 23829881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frozen Hydrogen Peroxide and Nitrite Solution: The Acceleration of Benzoic Acid Oxidation via the Decreased pH in Ice.
    Ahn YY; Kim J; Kim K
    Environ Sci Technol; 2022 Feb; 56(4):2323-2333. PubMed ID: 34904827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Mechanism of Glass Delamination in Type 1A Borosilicate Vials Containing Frozen Protein Formulations.
    Jiang G; Goss M; Li G; Jing W; Shen H; Fujimori K; Le L; Wong L; Wen ZQ; Nashed-Samuel Y; Riker K; Germansderfer A; Tsang P; Ricci M
    PDA J Pharm Sci Technol; 2013; 67(4):323-35. PubMed ID: 23872443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization.
    Bhatnagar BS; Bogner RH; Pikal MJ
    Pharm Dev Technol; 2007; 12(5):505-23. PubMed ID: 17963151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol-disulfide exchange in peptides derived from human growth hormone during lyophilization and storage in the solid state.
    Chandrasekhar S; Topp EM
    J Pharm Sci; 2015 Apr; 104(4):1291-302. PubMed ID: 25631887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the effect of freezing on protease-catalyzed peptide synthesis using cryoprotectants and frozen organic solvent.
    Haensler M; Arnold K
    Biol Chem; 2000 Jan; 381(1):79-83. PubMed ID: 10722054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryochemistry: freezing effect on peptide coupling in different organic solutions.
    Vajda T; Szókán G; Hollósi M
    J Pept Sci; 1998 Jun; 4(4):300-4. PubMed ID: 9680064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive transformation of hexavalent chromium by ferrous ions in a frozen environment: Mechanism, kinetics, and environmental implications.
    Nguyen QA; Kim B; Chung HY; Nguyen AQK; Kim J; Kim K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111735. PubMed ID: 33396064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of physical field-assisted freezing and thawing to mitigate damage to frozen food.
    Jiang Q; Zhang M; Mujumdar AS
    J Sci Food Agric; 2023 Mar; 103(5):2223-2238. PubMed ID: 36208477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of freeze-concentration effect on proteinase-catalysed peptide synthesis in frozen aqueous systems.
    Ullmann G; Haensler M; Gruender W; Wagner M; Hofmann HJ; Jakubke HD
    Biochim Biophys Acta; 1997 Apr; 1338(2):253-8. PubMed ID: 9128143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protease-catalyzed peptide synthesis in frozen aqueous systems: the "freeze-concentration model".
    Schuster M; Aaviksaar A; Haga M; Ullmann U; Jakubke HD
    Biomed Biochim Acta; 1991; 50(10-11):S84-9. PubMed ID: 1820066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing Functional Nucleic Acids: From Molecular Reactions to Surface Immobilization.
    Li Z; Duan S; Liu B
    Chembiochem; 2024 Jul; ():e202400416. PubMed ID: 38979890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical kinetics of reactions in the unfrozen solution of ice.
    Takenaka N; Bandow H
    J Phys Chem A; 2007 Sep; 111(36):8780-6. PubMed ID: 17705357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic studies of glass vial breakage for frozen formulations. II. Vial breakage caused by amorphous protein formulations.
    Jiang G; Akers M; Jain M; Guo J; Distler A; Swift R; Wadhwa MV; Jameel F; Patro S; Freund E
    PDA J Pharm Sci Technol; 2007; 61(6):452-60. PubMed ID: 18410046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The migration and transformation of dissolved organic matter during the freezing processes of water.
    Xue S; Wen Y; Hui X; Zhang L; Zhang Z; Wang J; Zhang Y
    J Environ Sci (China); 2015 Jan; 27():168-78. PubMed ID: 25597675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass transitions in frozen systems as influenced by molecular weight of food components.
    Zhao JH; Kumar PK; Sablani SS
    Compr Rev Food Sci Food Saf; 2022 Nov; 21(6):4683-4715. PubMed ID: 36156387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-Thaw Cycle-Enhanced Transformation of Iodide to Organoiodine Compounds in the Presence of Natural Organic Matter and Fe(III).
    Du J; Kim K; Min DW; Choi W
    Environ Sci Technol; 2022 Jan; 56(2):1007-1016. PubMed ID: 34967617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.