These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33535590)

  • 21. In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly(epsilon-caprolactone-co-DL-lactide) and bioactive glass (S53P4).
    Jaakkola T; Rich J; Tirri T; Närhi T; Jokinen M; Seppälä J; Yli-Urpo A
    Biomaterials; 2004 Feb; 25(4):575-81. PubMed ID: 14607495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of biofilm formation on the optical properties of novel bioactive glass-containing composites.
    Hyun HK; Ferracane JL
    Dent Mater; 2016 Sep; 32(9):1144-51. PubMed ID: 27394086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices.
    Vergnol G; Ginsac N; Rivory P; Meille S; Chenal JM; Balvay S; Chevalier J; Hartmann DJ
    J Biomed Mater Res B Appl Biomater; 2016 Jan; 104(1):180-91. PubMed ID: 25677798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite.
    Ahmed I; Cronin PS; Abou Neel EA; Parsons AJ; Knowles JC; Rudd CD
    J Biomed Mater Res B Appl Biomater; 2009 Apr; 89(1):18-27. PubMed ID: 18800348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biofilm formation affects surface properties of novel bioactive glass-containing composites.
    Hyun HK; Salehi S; Ferracane JL
    Dent Mater; 2015 Dec; 31(12):1599-608. PubMed ID: 26590029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering.
    Haaparanta AM; Uppstu P; Hannula M; Ellä V; Rosling A; Kellomäki M
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():457-66. PubMed ID: 26249615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A technique for improving dispersion within polymer-glass composites using polymer precipitation.
    Oosterbeek RN; Zhang XC; Best SM; Cameron RE
    J Mech Behav Biomed Mater; 2021 Nov; 123():104767. PubMed ID: 34455140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioabsorbable scaffolds for guided bone regeneration and generation.
    Kellomäki M; Niiranen H; Puumanen K; Ashammakhi N; Waris T; Törmälä P
    Biomaterials; 2000 Dec; 21(24):2495-505. PubMed ID: 11071599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds.
    Dziadek M; Pawlik J; Menaszek E; Stodolak-Zych E; Cholewa-Kowalska K
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1580-93. PubMed ID: 25533304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Composites Containing Bioactive Glasses on Demineralized Dentin.
    Tezvergil-Mutluay A; Seseogullari-Dirihan R; Feitosa VP; Cama G; Brauer DS; Sauro S
    J Dent Res; 2017 Aug; 96(9):999-1005. PubMed ID: 28535357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate.
    Ahola N; Veiranto M; Rich J; Efimov A; Hannula M; Seppälä J; Kellomäki M
    J Biomater Appl; 2013 Nov; 28(4):529-43. PubMed ID: 23048066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.
    Ahmed I; Parsons AJ; Palmer G; Knowles JC; Walker GS; Rudd CD
    Acta Biomater; 2008 Sep; 4(5):1307-14. PubMed ID: 18448401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resorbable composites with bioresorbable glass fibers for load-bearing applications. In vitro degradation and degradation mechanism.
    Lehtonen TJ; Tuominen JU; Hiekkanen E
    Acta Biomater; 2013 Jan; 9(1):4868-77. PubMed ID: 22963847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites.
    Sharmin N; Hasan MS; Parsons AJ; Rudd CD; Ahmed I
    J Mech Behav Biomed Mater; 2016 Jun; 59():41-56. PubMed ID: 26745720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of long-term in vitro testing on the properties of bioactive glass-polysulfone composites.
    Oréfice R; West J; Latorre G; Hench L; Brennan A
    Biomacromolecules; 2010 Mar; 11(3):657-65. PubMed ID: 20108891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass-filled polylactide foams.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):335-46. PubMed ID: 12889004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactide 70:30 and self-reinforced poly(L/DL)lactide 70: 30/bioactive glass composite rods. an experimental study on rabbits.
    Pyhältö T; Lapinsuo M; Pätiälä H; Niiranen H; Törmälä P; Rokkanen P
    J Biomater Sci Polym Ed; 2005; 16(6):725-44. PubMed ID: 16028593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly(methyl methacrylate).
    Shinzato S; Nakamura T; Ando K; Kokubo T; Kitamura Y
    J Biomed Mater Res; 2002 Jun; 60(4):556-63. PubMed ID: 11948514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.