These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Salvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling. Hou B; Qiang G; Zhao Y; Yang X; Chen X; Yan Y; Wang X; Liu C; Zhang L; Du G Cell Physiol Biochem; 2017; 44(6):2378-2394. PubMed ID: 29262395 [TBL] [Abstract][Full Text] [Related]
6. DNA aptamer raised against AGEs blocks the progression of experimental diabetic nephropathy. Kaida Y; Fukami K; Matsui T; Higashimoto Y; Nishino Y; Obara N; Nakayama Y; Ando R; Toyonaga M; Ueda S; Takeuchi M; Inoue H; Okuda S; Yamagishi S Diabetes; 2013 Sep; 62(9):3241-50. PubMed ID: 23630304 [TBL] [Abstract][Full Text] [Related]
7. DNA Aptamer Raised against Advanced Glycation End Products Improves Sperm Concentration, Motility, and Viability by Suppressing Receptors for Advanced Glycation End Product-Induced Oxidative Stress and Inflammation in the Testes of Diabetic Mice. Mori Y; Terasaki M; Osaka N; Fujikawa T; Yashima H; Saito T; Kataoka Y; Ohara M; Higashimoto Y; Matsui T; Yamagishi SI Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892134 [TBL] [Abstract][Full Text] [Related]
8. DNA aptamer raised against advanced glycation end products (AGEs) improves glycemic control and decreases adipocyte size in fructose-fed rats by suppressing AGE-RAGE axis. Ojima A; Matsui T; Nakamura N; Higashimoto Y; Ueda S; Fukami K; Okuda S; Yamagishi S Horm Metab Res; 2015 Apr; 47(4):253-8. PubMed ID: 25105541 [TBL] [Abstract][Full Text] [Related]
9. Role of Calbindin-D28k in Diabetes-Associated Advanced Glycation End-Products-Induced Renal Proximal Tubule Cell Injury. Huang KH; Guan SS; Lin WH; Wu CT; Sheu ML; Chiang CK; Liu SH Cells; 2019 Jun; 8(7):. PubMed ID: 31262060 [TBL] [Abstract][Full Text] [Related]
10. DNA-Aptamer Raised against Receptor for Advanced Glycation End Products Improves Survival Rate in Septic Mice. Koga Y; Sotokawauchi A; Higashimoto Y; Nishino Y; Hashizume N; Kakuma T; Akiba J; Tanaka Y; Matsui T; Yagi M; Yamagishi SI Oxid Med Cell Longev; 2021; 2021():9932311. PubMed ID: 34413930 [TBL] [Abstract][Full Text] [Related]
11. Activation of tubular epithelial cells in diabetic nephropathy. Morcos M; Sayed AA; Bierhaus A; Yard B; Waldherr R; Merz W; Kloeting I; Schleicher E; Mentz S; Abd el Baki RF; Tritschler H; Kasper M; Schwenger V; Hamann A; Dugi KA; Schmidt AM; Stern D; Ziegler R; Haering HU; Andrassy M; van der Woude F; Nawroth PP Diabetes; 2002 Dec; 51(12):3532-44. PubMed ID: 12453911 [TBL] [Abstract][Full Text] [Related]
12. [Protective effect of salidroside on renal damage in diabetic nephropathy mice by regulating RAGE/JAK1/STAT signaling pathway]. Leng CL; Lin K; Zhou M; Ye XS; Shu XJ; Liu W Zhongguo Zhong Yao Za Zhi; 2024 Apr; 49(8):2188-2196. PubMed ID: 38812234 [TBL] [Abstract][Full Text] [Related]
13. Advanced glycation end products accelerate rat vascular calcification through RAGE/oxidative stress. Wei Q; Ren X; Jiang Y; Jin H; Liu N; Li J BMC Cardiovasc Disord; 2013 Mar; 13():13. PubMed ID: 23497312 [TBL] [Abstract][Full Text] [Related]
14. Osteomeles schwerinae extracts inhibits the binding to receptors of advanced glycation end products and TGF-β1 expression in mesangial cells under diabetic conditions. Kim YS; Jung DH; Lee IS; Pyun BJ; Kim JS Phytomedicine; 2016 Apr; 23(4):388-97. PubMed ID: 27002409 [TBL] [Abstract][Full Text] [Related]
15. Chrysin Inhibits Advanced Glycation End Products-Induced Kidney Fibrosis in Renal Mesangial Cells and Diabetic Kidneys. Lee EJ; Kang MK; Kim DY; Kim YH; Oh H; Kang YH Nutrients; 2018 Jul; 10(7):. PubMed ID: 29987200 [TBL] [Abstract][Full Text] [Related]
16. Dipeptidyl peptidase-4 deficiency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis. Matsui T; Nakashima S; Nishino Y; Ojima A; Nakamura N; Arima K; Fukami K; Okuda S; Yamagishi S Lab Invest; 2015 May; 95(5):525-33. PubMed ID: 25730373 [TBL] [Abstract][Full Text] [Related]
17. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Sanajou D; Ghorbani Haghjo A; Argani H; Aslani S Eur J Pharmacol; 2018 Aug; 833():158-164. PubMed ID: 29883668 [TBL] [Abstract][Full Text] [Related]
18. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. Tanji N; Markowitz GS; Fu C; Kislinger T; Taguchi A; Pischetsrieder M; Stern D; Schmidt AM; D'Agati VD J Am Soc Nephrol; 2000 Sep; 11(9):1656-1666. PubMed ID: 10966490 [TBL] [Abstract][Full Text] [Related]
19. Pigment epithelium-derived factor (PEDF) inhibits proximal tubular cell injury in early diabetic nephropathy by suppressing advanced glycation end products (AGEs)-receptor (RAGE) axis. Maeda S; Matsui T; Takeuchi M; Yoshida Y; Yamakawa R; Fukami K; Yamagishi S Pharmacol Res; 2011 Mar; 63(3):241-8. PubMed ID: 21115116 [TBL] [Abstract][Full Text] [Related]
20. Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease. Yang W; Luo Y; Yang S; Zeng M; Zhang S; Liu J; Han Y; Liu Y; Zhu X; Wu H; Liu F; Sun L; Xiao L Clin Sci (Lond); 2018 Nov; 132(22):2407-2422. PubMed ID: 30348828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]