These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 33535988)

  • 1. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T
    Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB
    BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma.
    Patel M; Zhan J; Natarajan K; Flintham R; Davies N; Sanghera P; Grist J; Duddalwar V; Peet A; Sawlani V
    Clin Radiol; 2021 Aug; 76(8):628.e17-628.e27. PubMed ID: 33941364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of IVIM-DWI and 3D-ASL for differentiating true progression from pseudoprogression of Glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial.
    Liu ZC; Yan LF; Hu YC; Sun YZ; Tian Q; Nan HY; Yu Y; Sun Q; Wang W; Cui GB
    BMC Med Imaging; 2017 Feb; 17(1):10. PubMed ID: 28143434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.
    Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS
    Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between the Prebolus T1 Measurement and the Fixed T1 Value in Dynamic Contrast-Enhanced MR Imaging for the Differentiation of True Progression from Pseudoprogression in Glioblastoma Treated with Concurrent Radiation Therapy and Temozolomide Chemotherapy.
    Nam JG; Kang KM; Choi SH; Lim WH; Yoo RE; Kim JH; Yun TJ; Sohn CH
    AJNR Am J Neuroradiol; 2017 Dec; 38(12):2243-2250. PubMed ID: 29074633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI.
    Chen X; Wei X; Zhang Z; Yang R; Zhu Y; Jiang X
    Clin Imaging; 2015; 39(5):775-80. PubMed ID: 25956436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Better efficacy in differentiating WHO grade II from III oligodendrogliomas with machine-learning than radiologist's reading from conventional T1 contrast-enhanced and fluid attenuated inversion recovery images.
    Zhao SS; Feng XL; Hu YC; Han Y; Tian Q; Sun YZ; Zhang J; Ge XW; Cheng SC; Li XL; Mao L; Shen SN; Yan LF; Cui GB; Wang W
    BMC Neurol; 2020 Feb; 20(1):48. PubMed ID: 32033580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme.
    Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z
    Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients.
    Chaddad A; Sabri S; Niazi T; Abdulkarim B
    Med Biol Eng Comput; 2018 Dec; 56(12):2287-2300. PubMed ID: 29915951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of pseudoprogression in post-treatment glioblastoma using dynamic susceptibility contrast-derived oxygenation and microvascular transit time heterogeneity measures.
    Park JE; Kim HS; Kim N; Borra R; Mouridsen K; Hansen MB; Kim YH; Hong CK; Kim JH
    Eur Radiol; 2024 May; 34(5):3061-3073. PubMed ID: 37848773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis.
    Artzi M; Bressler I; Ben Bashat D
    J Magn Reson Imaging; 2019 Aug; 50(2):519-528. PubMed ID: 30635952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma.
    Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V
    Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI.
    Zhang H; Zhang H; Zhang Y; Zhou B; Wu L; Lei Y; Huang B
    J Magn Reson Imaging; 2023 Nov; 58(5):1441-1451. PubMed ID: 36896953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The efficacy of using a multiparametric magnetic resonance imaging-based radiomics model to distinguish glioma recurrence from pseudoprogression.
    Fu FX; Cai QL; Li G; Wu XJ; Hong L; Chen WS
    Magn Reson Imaging; 2024 Sep; 111():168-178. PubMed ID: 38729227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging.
    Chu HH; Choi SH; Ryoo I; Kim SC; Yeom JA; Shin H; Jung SC; Lee AL; Yoon TJ; Kim TM; Lee SH; Park CK; Kim JH; Sohn CH; Park SH; Kim IH
    Radiology; 2013 Dec; 269(3):831-40. PubMed ID: 23771912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.
    Wang S; Martinez-Lage M; Sakai Y; Chawla S; Kim SG; Alonso-Basanta M; Lustig RA; Brem S; Mohan S; Wolf RL; Desai A; Poptani H
    AJNR Am J Neuroradiol; 2016 Jan; 37(1):28-36. PubMed ID: 26450533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiating pseudoprogression from true progression: analysis of radiographic, biologic, and clinical clues in GBM.
    Rowe LS; Butman JA; Mackey M; Shih JH; Cooley-Zgela T; Ning H; Gilbert MR; Smart DK; Camphausen K; Krauze AV
    J Neurooncol; 2018 Aug; 139(1):145-152. PubMed ID: 29767308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma.
    Elshafeey N; Kotrotsou A; Hassan A; Elshafei N; Hassan I; Ahmed S; Abrol S; Agarwal A; El Salek K; Bergamaschi S; Acharya J; Moron FE; Law M; Fuller GN; Huse JT; Zinn PO; Colen RR
    Nat Commun; 2019 Jul; 10(1):3170. PubMed ID: 31320621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.