BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 33535988)

  • 21. A radiomics nomogram based on multiparametric MRI might stratify glioblastoma patients according to survival.
    Zhang X; Lu H; Tian Q; Feng N; Yin L; Xu X; Du P; Liu Y
    Eur Radiol; 2019 Oct; 29(10):5528-5538. PubMed ID: 30847586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and validation of a multi-modality fusion deep learning model for differentiating glioblastoma from solitary brain metastases.
    Shen S; Li C; Fan Y; Lu S; Yan Z; Liu H; Zhou H; Zhang Z
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 49(1):58-67. PubMed ID: 38615167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation.
    Park YW; Choi D; Park JE; Ahn SS; Kim H; Chang JH; Kim SH; Kim HS; Lee SK
    Sci Rep; 2021 Feb; 11(1):2913. PubMed ID: 33536499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined iron oxide nanoparticle ferumoxytol and gadolinium contrast enhanced MRI define glioblastoma pseudoprogression.
    Barajas RF; Hamilton BE; Schwartz D; McConnell HL; Pettersson DR; Horvath A; Szidonya L; Varallyay CG; Firkins J; Jaboin JJ; Kubicky CD; Raslan AM; Dogan A; Cetas JS; Ciporen J; Han SJ; Ambady P; Muldoon LL; Woltjer R; Rooney WD; Neuwelt EA
    Neuro Oncol; 2019 Mar; 21(4):517-526. PubMed ID: 30277536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: a pilot study.
    Gahramanov S; Raslan AM; Muldoon LL; Hamilton BE; Rooney WD; Varallyay CG; Njus JM; Haluska M; Neuwelt EA
    Int J Radiat Oncol Biol Phys; 2011 Feb; 79(2):514-23. PubMed ID: 20395065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis.
    Liu Y; Zhang X; Feng N; Yin L; He Y; Xu X; Lu H
    Acta Radiol; 2018 Oct; 59(10):1239-1246. PubMed ID: 29430935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of progressive disease from pseudoprogression using MRI histogram analysis in patients with treated glioblastoma.
    Yildirim M; Baykara M
    Acta Neurol Belg; 2022 Apr; 122(2):363-368. PubMed ID: 33555560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma.
    Wick W; Chinot OL; Bendszus M; Mason W; Henriksson R; Saran F; Nishikawa R; Revil C; Kerloeguen Y; Cloughesy T
    Neuro Oncol; 2016 Oct; 18(10):1434-41. PubMed ID: 27515827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of Pseudoprogression versus Progression using Machine Learning Algorithm in Glioblastoma.
    Jang BS; Jeon SH; Kim IH; Kim IA
    Sci Rep; 2018 Aug; 8(1):12516. PubMed ID: 30131513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question.
    Nasseri M; Gahramanov S; Netto JP; Fu R; Muldoon LL; Varallyay C; Hamilton BE; Neuwelt EA
    Neuro Oncol; 2014 Aug; 16(8):1146-54. PubMed ID: 24523362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 - Radiological features and metric markers.
    Le Fèvre C; Constans JM; Chambrelant I; Antoni D; Bund C; Leroy-Freschini B; Schott R; Cebula H; Noël G
    Crit Rev Oncol Hematol; 2021 Mar; 159():103230. PubMed ID: 33515701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma.
    Kunimatsu A; Kunimatsu N; Yasaka K; Akai H; Kamiya K; Watadani T; Mori H; Abe O
    Magn Reson Med Sci; 2019 Jan; 18(1):44-52. PubMed ID: 29769456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma.
    Kim JY; Yoon MJ; Park JE; Choi EJ; Lee J; Kim HS
    Neuroradiology; 2019 Nov; 61(11):1261-1272. PubMed ID: 31289886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy.
    Horvat N; Veeraraghavan H; Khan M; Blazic I; Zheng J; Capanu M; Sala E; Garcia-Aguilar J; Gollub MJ; Petkovska I
    Radiology; 2018 Jun; 287(3):833-843. PubMed ID: 29514017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging.
    Choi YJ; Kim HS; Jahng GH; Kim SJ; Suh DC
    Acta Radiol; 2013 May; 54(4):448-54. PubMed ID: 23592805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging.
    Yun TJ; Park CK; Kim TM; Lee SH; Kim JH; Sohn CH; Park SH; Kim IH; Choi SH
    Radiology; 2015 Mar; 274(3):830-40. PubMed ID: 25333475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of Radiomics features of Peritumoral Vasogenic Edema extracted from fluid-attenuated inversion recovery images in glioblastoma and isolated brain metastasis, using T1-dynamic contrast-enhanced Perfusion analysis.
    Parvaze PS; Bhattacharjee R; Verma YK; Singh RK; Yadav V; Singh A; Khanna G; Ahlawat S; Trivedi R; Patir R; Vaishya S; Shah TJ; Gupta RK
    NMR Biomed; 2023 May; 36(5):e4884. PubMed ID: 36453877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differentiation Between True Tumor Progression of Glioblastoma and Pseudoprogression Using Diffusion-Weighted Imaging and Perfusion-Weighted Imaging: Systematic Review and Meta-analysis.
    Tsakiris C; Siempis T; Alexiou GA; Zikou A; Sioka C; Voulgaris S; Argyropoulou MI
    World Neurosurg; 2020 Dec; 144():e100-e109. PubMed ID: 32777397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma.
    Ingrisch M; Schneider MJ; Nörenberg D; Negrao de Figueiredo G; Maier-Hein K; Suchorska B; Schüller U; Albert N; Brückmann H; Reiser M; Tonn JC; Ertl-Wagner B
    Invest Radiol; 2017 Jun; 52(6):360-366. PubMed ID: 28079702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.