BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33536025)

  • 1. Engineering of Saccharomyces cerevisiae for anthranilate and methyl anthranilate production.
    Kuivanen J; Kannisto M; Mojzita D; Rischer H; Toivari M; Jäntti J
    Microb Cell Fact; 2021 Feb; 20(1):34. PubMed ID: 33536025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction.
    Chen L; Chen M; Ma C; Zeng AP
    Metab Eng; 2018 May; 47():434-444. PubMed ID: 29733896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial production of methyl anthranilate, a grape flavor compound.
    Luo ZW; Cho JS; Lee SY
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10749-10756. PubMed ID: 31085637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose.
    Jiang J; Yin H; Wang S; Zhuang Y; Liu S; Liu T; Ma Y
    J Agric Food Chem; 2018 May; 66(17):4431-4438. PubMed ID: 29671328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthranilic Acid Accumulation in Saccharomyces cerevisiae Induced by Expression of a Nonribosomal Peptide Synthetase Gene from Paecilomyces cinnamomeus BCC 9616.
    Promsuk G; Vuttipongchaikij S; Prommarit K; Suttangkakul A; Lazarus CM; Wonnapinij P; Wattana-Amorn P
    Chembiochem; 2022 Dec; 23(24):e202200573. PubMed ID: 36250803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of tranilast [N-(3',4'-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae.
    Eudes A; Baidoo EE; Yang F; Burd H; Hadi MZ; Collins FW; Keasling JD; Loqué D
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):989-1000. PubMed ID: 20972784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Level Production of Hydroxytyrosol in Engineered
    Liu H; Wu X; Ma H; Li J; Liu Z; Guo X; Dong J; Zou S; Luo Y
    ACS Synth Biol; 2022 Nov; 11(11):3706-3713. PubMed ID: 36345886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate.
    Sun X; Lin Y; Huang Q; Yuan Q; Yan Y
    Appl Environ Microbiol; 2013 Jul; 79(13):4024-30. PubMed ID: 23603682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering.
    Bamba T; Yukawa T; Guirimand G; Inokuma K; Sasaki K; Hasunuma T; Kondo A
    Metab Eng; 2019 Dec; 56():17-27. PubMed ID: 31434008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic flux regulation for high-titer anthranilate production by plasmid-free, conditionally-auxotrophic strains of Pseudomonas putida.
    Fernández-Cabezón L; Rosich I Bosch B; Kozaeva E; Gurdo N; Nikel PI
    Metab Eng; 2022 Sep; 73():11-25. PubMed ID: 35659519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy.
    Wang C; Su X; Sun M; Zhang M; Wu J; Xing J; Wang Y; Xue J; Liu X; Sun W; Chen S
    Microb Cell Fact; 2019 May; 18(1):95. PubMed ID: 31138208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in
    Deshpande A; Vue J; Morgan J
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32144109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered
    Kim HJ; Seo SY; Park HS; Ko JY; Choi SS; Lee SJ; Kim ES
    Front Microbiol; 2023; 14():1081221. PubMed ID: 37007513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Saccharomyces cerevisiae for isoprenol production.
    Kim J; Baidoo EEK; Amer B; Mukhopadhyay A; Adams PD; Simmons BA; Lee TS
    Metab Eng; 2021 Mar; 64():154-166. PubMed ID: 33581331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting the Diversity of Saccharomycotina Yeasts To Engineer Biotin-Independent Growth of Saccharomyces cerevisiae.
    Wronska AK; Haak MP; Geraats E; Bruins Slot E; van den Broek M; Pronk JT; Daran JM
    Appl Environ Microbiol; 2020 Jun; 86(12):. PubMed ID: 32276977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli.
    Eudes A; Juminaga D; Baidoo EE; Collins FW; Keasling JD; Loqué D
    Microb Cell Fact; 2013 Jun; 12():62. PubMed ID: 23806124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in Saccharomyces cerevisiae.
    Krink-Koutsoubelis N; Loechner AC; Lechner A; Link H; Denby CM; Vögeli B; Erb TJ; Yuzawa S; Jakociunas T; Katz L; Jensen MK; Sourjik V; Keasling JD
    ACS Synth Biol; 2018 Apr; 7(4):1105-1115. PubMed ID: 29498824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots.
    Pollier J; De Geyter N; Moses T; Boachon B; Franco-Zorrilla JM; Bai Y; Lacchini E; Gholami A; Vanden Bossche R; Werck-Reichhart D; Goormachtig S; Goossens A
    Plant J; 2019 Aug; 99(4):637-654. PubMed ID: 31009122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Methylated Anthranilate Derivatives Using Engineered Strains of
    Lee HL; Kim SY; Kim EJ; Han DY; Kim BG; Ahn JH
    J Microbiol Biotechnol; 2019 Jun; 29(6):839-844. PubMed ID: 31154751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae.
    Averesch NJ; Winter G; Krömer JO
    Microb Cell Fact; 2016 May; 15():89. PubMed ID: 27230236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.