BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 33536240)

  • 1. 1,6-hexanediol rapidly immobilizes and condenses chromatin in living human cells.
    Itoh Y; Iida S; Tamura S; Nagashima R; Shiraki K; Goto T; Hibino K; Ide S; Maeshima K
    Life Sci Alliance; 2021 Apr; 4(4):. PubMed ID: 33536240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells.
    Ulianov SV; Velichko AK; Magnitov MD; Luzhin AV; Golov AK; Ovsyannikova N; Kireev II; Gavrikov AS; Mishin AS; Garaev AK; Tyakht AV; Gavrilov AA; Kantidze OL; Razin SV
    Nucleic Acids Res; 2021 Oct; 49(18):10524-10541. PubMed ID: 33836078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the phase separation property of chromatin-associated proteins under physiological conditions using an anti-1,6-hexanediol index.
    Shi M; You K; Chen T; Hou C; Liang Z; Liu M; Wang J; Wei T; Qin J; Chen Y; Zhang MQ; Li T
    Genome Biol; 2021 Aug; 22(1):229. PubMed ID: 34404448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization.
    Liu X; Jiang S; Ma L; Qu J; Zhao L; Zhu X; Ding J
    Genome Biol; 2021 Aug; 22(1):230. PubMed ID: 34404453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density.
    Meduri R; Rubio LS; Mohajan S; Gross DS
    J Biol Chem; 2022 Oct; 298(10):102365. PubMed ID: 35963432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating phase separation properties of chromatin-associated proteins using gradient elution of 1,6-hexanediol.
    Zhu P; Hou C; Liu M; Chen T; Li T; Wang L
    BMC Genomics; 2023 Aug; 24(1):493. PubMed ID: 37641002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-acetyl amino acid amide solubility in aqueous 1,6-hexanediol solutions: Insights into the protein droplet deformation mechanism.
    Hirano A; Wada M; Sato TK; Kameda T
    Int J Biol Macromol; 2024 Mar; 261(Pt 1):129724. PubMed ID: 38272403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression.
    Li W; Jiang H
    J Mol Biol; 2022 Jan; 434(1):167151. PubMed ID: 34271007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of Chromatin by Intrinsic and Regulated Phase Separation.
    Gibson BA; Doolittle LK; Schneider MWG; Jensen LE; Gamarra N; Henry L; Gerlich DW; Redding S; Rosen MK
    Cell; 2019 Oct; 179(2):470-484.e21. PubMed ID: 31543265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1,6-Hexanediol, commonly used to dissolve liquid-liquid phase separated condensates, directly impairs kinase and phosphatase activities.
    Düster R; Kaltheuner IH; Schmitz M; Geyer M
    J Biol Chem; 2021; 296():100260. PubMed ID: 33814344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation.
    Tatavosian R; Kent S; Brown K; Yao T; Duc HN; Huynh TN; Zhen CY; Ma B; Wang H; Ren X
    J Biol Chem; 2019 Feb; 294(5):1451-1463. PubMed ID: 30514760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thymine DNA glycosylase mediates chromatin phase separation in a DNA methylation-dependent manner.
    McGregor LA; Deckard CE; Smolen JA; Porter GM; Sczepanski JT
    J Biol Chem; 2023 Jul; 299(7):104907. PubMed ID: 37307918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay of dynamic genome organization and biomolecular condensates.
    Chung YC; Tu LC
    Curr Opin Cell Biol; 2023 Dec; 85():102252. PubMed ID: 37806293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersal of PRC1 condensates disrupts polycomb chromatin domains and loops.
    Williamson I; Boyle S; Grimes GR; Friman ET; Bickmore WA
    Life Sci Alliance; 2023 Oct; 6(10):. PubMed ID: 37487640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-Liquid Phase Separation of Histone Proteins in Cells: Role in Chromatin Organization.
    Shakya A; Park S; Rana N; King JT
    Biophys J; 2020 Feb; 118(3):753-764. PubMed ID: 31952807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin network retards nucleoli coalescence.
    Qi Y; Zhang B
    Nat Commun; 2021 Nov; 12(1):6824. PubMed ID: 34819511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear condensates of p300 formed though the structured catalytic core can act as a storage pool of p300 with reduced HAT activity.
    Zhang Y; Brown K; Yu Y; Ibrahim Z; Zandian M; Xuan H; Ingersoll S; Lee T; Ebmeier CC; Liu J; Panne D; Shi X; Ren X; Kutateladze TG
    Nat Commun; 2021 Jul; 12(1):4618. PubMed ID: 34326347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor.
    Stortz M; Pecci A; Presman DM; Levi V
    BMC Biol; 2020 Jun; 18(1):59. PubMed ID: 32487073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin Liquid-Liquid Phase Separation (LLPS) Is Regulated by Ionic Conditions and Fiber Length.
    Chen Q; Zhao L; Soman A; Arkhipova AY; Li J; Li H; Chen Y; Shi X; Nordenskiöld L
    Cells; 2022 Oct; 11(19):. PubMed ID: 36231107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP, Mg
    Wright RHG; Le Dily F; Beato M
    Trends Biochem Sci; 2019 Jul; 44(7):565-574. PubMed ID: 31072688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.