BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33536393)

  • 1. Adverse effects of methylmercury on gut bacteria and accelerated accumulation of mercury in organs due to disruption of gut microbiota.
    Seki N; Akiyama M; Yamakawa H; Hase K; Kumagai Y; Kim YG
    J Toxicol Sci; 2021; 46(2):91-97. PubMed ID: 33536393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fate of methylmercury through the formation of bismethylmercury sulfide as an intermediate in mice.
    Abiko Y; Katayama Y; Zhao W; Horai S; Sakurai K; Kumagai Y
    Sci Rep; 2021 Sep; 11(1):17598. PubMed ID: 34475444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the role of the gut microbiome in methylmercury demethylation and elimination in humans and gnotobiotic mice.
    Coe GL; Krout IN; Munro-Ehrlich M; Beamish CR; Vorojeikina D; Colman DR; Boyd EJ; Walk ST; Rand MD
    Arch Toxicol; 2023 Sep; 97(9):2399-2418. PubMed ID: 37392210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations.
    Rothenberg SE; Wagner CL; Hamidi B; Alekseyenko AV; Andrea Azcarate-Peril M
    Environ Res; 2019 May; 172():700-712. PubMed ID: 30903970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats.
    Lin X; Zhao J; Zhang W; He L; Wang L; Chang D; Cui L; Gao Y; Li B; Chen C; Li YF
    Ecotoxicol Environ Saf; 2020 Mar; 190():110130. PubMed ID: 31918252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resveratrol alleviates perinatal methylmercury-induced neurobehavioral impairments by modulating the gut microbiota composition and neurotransmitter disturbances.
    Chen F; Zhang L; Liu Y; Zhang A; Wang W
    Environ Toxicol; 2024 Jan; 39(1):329-340. PubMed ID: 37713589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats.
    Liu Y; Ji J; Zhang W; Suo Y; Zhao J; Lin X; Cui L; Li B; Hu H; Chen C; Li YF
    Ecotoxicol Environ Saf; 2019 Dec; 185():109720. PubMed ID: 31585392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of Mercury Exposure Levels and Sources on the Demethylation of Methylmercury Through Human Gut Microbiota.
    Yang XF; Yang SC; Wen FL; Feng L; Meng B; Hu HY; Wang BL; Li J; Poulain AJ; Li P
    Bull Environ Contam Toxicol; 2022 Sep; 109(3):534-541. PubMed ID: 35876846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiation of methylmercury toxicity by combined metal exposure: In vitro and in vivo models of a restricted metal exposome.
    Akiyama M; Shinkai Y; Yamakawa H; Kim YG; Kumagai Y
    Chemosphere; 2022 Jul; 299():134374. PubMed ID: 35318019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal microbiota protects against methylmercury-induced neurotoxicity.
    Ke T; Rajoo A; Tinkov AA; Skalny AV; Tizabi Y; Rocha JBT; Bowman AB; Aschner M
    Biometals; 2024 Jun; 37(3):561-576. PubMed ID: 37973679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal Methylation and Demethylation of Mercury.
    Li H; Lin X; Zhao J; Cui L; Wang L; Gao Y; Li B; Chen C; Li YF
    Bull Environ Contam Toxicol; 2019 May; 102(5):597-604. PubMed ID: 30515547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotransmitter disturbances caused by methylmercury exposure: Microbiota-gut-brain interaction.
    Wang W; Chen F; Zhang L; Wen F; Yu Q; Li P; Zhang A
    Sci Total Environ; 2023 May; 873():162358. PubMed ID: 36822423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut as the target tissue of mercury and the extraintestinal effects.
    Tian X; Lin X; Zhao J; Cui L; Gao Y; Yu YL; Li B; Li YF
    Toxicology; 2023 Jan; 484():153396. PubMed ID: 36521575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary Fructooligosaccharides Reduce Mercury Levels in the Brain of Mice Exposed to Methylmercury.
    Nagano M; Fujimura M; Tada Y; Seko Y
    Biol Pharm Bull; 2021; 44(4):522-527. PubMed ID: 33790104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alteration of gut microbiome community play an important role in mercury biotransformation in largemouth bass.
    Tan S; Xu X; Cheng H; Wang J; Wang X
    Environ Res; 2022 Mar; 204(Pt A):112026. PubMed ID: 34509480
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Li H; Shi J; Zhao L; Guan J; Liu F; Huo G; Li B
    J Agric Food Chem; 2021 Jan; 69(1):183-197. PubMed ID: 33353302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of reactive persulfides in biological bismethylmercury sulfide formation.
    Abiko Y; Yoshida E; Ishii I; Fukuto JM; Akaike T; Kumagai Y
    Chem Res Toxicol; 2015 Jun; 28(6):1301-6. PubMed ID: 25874357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HgS and Zuotai differ from HgCl
    Zhang BB; Liu YM; Hu AL; Xu SF; Fan LD; Cheng ML; Li C; Wei LX; Liu J
    Toxicol Appl Pharmacol; 2019 Sep; 379():114615. PubMed ID: 31175882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methionine stimulates motor impairment and cerebellar mercury deposition in methylmercury-exposed mice.
    Zimmermann LT; dos Santos DB; Colle D; dos Santos AA; Hort MA; Garcia SC; Bressan LP; Bohrer D; Farina M
    J Toxicol Environ Health A; 2014; 77(1-3):46-56. PubMed ID: 24555646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Mercury Methylation across Diverse Methanogenic Archaea.
    Gilmour CC; Bullock AL; McBurney A; Podar M; Elias DA
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.