These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 33536423)

  • 1. Whole genome sequencing of skull-base chordoma reveals genomic alterations associated with recurrence and chordoma-specific survival.
    Bai J; Shi J; Li C; Wang S; Zhang T; Hua X; Zhu B; Koka H; Wu HH; Song L; Wang D; Wang M; Zhou W; Ballew BJ; Zhu B; Hicks B; Mirabello L; Parry DM; Zhai Y; Li M; Du J; Wang J; Zhang S; Liu Q; Zhao P; Gui S; Goldstein AM; Zhang Y; Yang XR
    Nat Commun; 2021 Feb; 12(1):757. PubMed ID: 33536423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mutational landscape of skull base and spinal chordomas and the identification of potential prognostic and theranostic biomarkers.
    Passeri T; Gutman T; Hamza A; Adle-Biassette H; Girard E; Beaurepere R; Tariq Z; Mariani O; Dahmani A; Bourneix C; Abbritti R; Driouch K; Bohec M; Servant N; Baulande S; Decaudin D; Guichard JP; Calugaru V; Feuvret L; Guinebretière JM; Champion L; Bièche I; Froelich S; Mammar H; Masliah-Planchon J
    J Neurosurg; 2023 Nov; 139(5):1270-1280. PubMed ID: 37029667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent loss of chromosome 22 and SMARCB1 deletion in extra-axial chordoma: A clinicopathological and molecular analysis.
    Wen X; Cimera R; Aryeequaye R; Abhinta M; Athanasian E; Healey J; Fabbri N; Boland P; Zhang Y; Hameed M
    Genes Chromosomes Cancer; 2021 Dec; 60(12):796-807. PubMed ID: 34392582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic aberrations frequently alter chromatin regulatory genes in chordoma.
    Wang L; Zehir A; Nafa K; Zhou N; Berger MF; Casanova J; Sadowska J; Lu C; Allis CD; Gounder M; Chandhanayingyong C; Ladanyi M; Boland PJ; Hameed M
    Genes Chromosomes Cancer; 2016 Jul; 55(7):591-600. PubMed ID: 27072194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic and transcriptomic characterization of skull base chordoma.
    Sa JK; Lee IH; Hong SD; Kong DS; Nam DH
    Oncotarget; 2017 Jan; 8(1):1321-1328. PubMed ID: 27901492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chordoma of the skull base: predictors of tumor recurrence.
    Pallini R; Maira G; Pierconti F; Falchetti ML; Alvino E; Cimino-Reale G; Fernandez E; D'Ambrosio E; Larocca LM
    J Neurosurg; 2003 Apr; 98(4):812-22. PubMed ID: 12691407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic profiles and clinical presentation of chordoma.
    Koka H; Zhou W; McMaster ML; Bai J; Luo W; Klein A; Zhang T; Hua X; Li X; Wang D; Xiong Y; Jones K; Vogt A; Hicks B; Parry D; Goldstein AM; Yang XR
    Acta Neuropathol Commun; 2024 Aug; 12(1):129. PubMed ID: 39135136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotyping cancer-associated genes in chordoma identifies mutations in oncogenes and areas of chromosomal loss involving CDKN2A, PTEN, and SMARCB1.
    Choy E; MacConaill LE; Cote GM; Le LP; Shen JK; Nielsen GP; Iafrate AJ; Garraway LA; Hornicek FJ; Duan Z
    PLoS One; 2014; 9(7):e101283. PubMed ID: 24983247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution whole-genome analysis of skull base chordomas implicates FHIT loss in chordoma pathogenesis.
    Diaz RJ; Guduk M; Romagnuolo R; Smith CA; Northcott P; Shih D; Berisha F; Flanagan A; Munoz DG; Cusimano MD; Pamir MN; Rutka JT
    Neoplasia; 2012 Sep; 14(9):788-98. PubMed ID: 23019410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-rhabdoid pediatric SMARCB1-deficient tumors: overlap between chordomas and malignant rhabdoid tumors?
    Renard C; Pissaloux D; Decouvelaere AV; Bourdeaut F; Ranchère D
    Cancer Genet; 2014 Sep; 207(9):384-9. PubMed ID: 25053104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SMARCB1/INI1 Involvement in Pediatric Chordoma: A Mutational and Immunohistochemical Analysis.
    Antonelli M; Raso A; Mascelli S; Gessi M; Nozza P; Coli A; Gardiman MP; Arcella A; Massimino M; Buttarelli FR; Giangaspero F
    Am J Surg Pathol; 2017 Jan; 41(1):56-61. PubMed ID: 27635948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of therapeutic targets in chordoma through comprehensive genomic and transcriptomic analyses.
    Liang WS; Dardis C; Helland A; Sekar S; Adkins J; Cuyugan L; Enriquez D; Byron S; Little AS
    Cold Spring Harb Mol Case Stud; 2018 Dec; 4(6):. PubMed ID: 30322893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and clinical risk factors for recurrence of skull base chordomas: gain on chromosome 2p, expression of brachyury, and lack of irradiation negatively correlate with patient prognosis.
    Kitamura Y; Sasaki H; Kimura T; Miwa T; Takahashi S; Kawase T; Yoshida K
    J Neuropathol Exp Neurol; 2013 Sep; 72(9):816-23. PubMed ID: 23965741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteogenomic characterization of skull-base chordoma.
    Zhang Q; Xu Z; Han R; Wang Y; Ye Z; Zhu J; Cai Y; Zhang F; Zhao J; Yao B; Qin Z; Qiao N; Huang R; Feng J; Wang Y; Rui W; He F; Zhao Y; Ding C
    Nat Commun; 2024 Sep; 15(1):8338. PubMed ID: 39333076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unravelling the role of immune cells and FN1 in the recurrence and therapeutic process of skull base chordoma.
    Huo X; Ma S; Wang C; Song L; Yao B; Zhu S; Li P; Wang L; Wu Z; Wang K
    Clin Transl Med; 2023 Oct; 13(10):e1429. PubMed ID: 37784253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of histopathological parameters, genome-wide copy number alterations, and variants in genes involved in cell cycle regulation in chordomas of the skull base and sacrum.
    Salle H; Durand S; Durand K; Bourthoumieu S; Lemnos L; Robert S; Pollet J; Passeri T; Khalil W; Froelich S; Adle-Biassette H; Labrousse F
    J Neuropathol Exp Neurol; 2023 Mar; 82(4):312-323. PubMed ID: 36779322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poorly differentiated chordoma with whole-genome doubling evolving from a SMARCB1-deficient conventional chordoma: A case report.
    Curcio C; Cimera R; Aryeequaye R; Rao M; Fabbri N; Zhang Y; Hameed M
    Genes Chromosomes Cancer; 2021 Jan; 60(1):43-48. PubMed ID: 32920865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pediatric Chordoma: A Tale of Two Genomes.
    O'Halloran K; Hakimjavadi H; Bootwalla M; Ostrow D; Kerawala R; Cotter JA; Yellapantula V; Kaneva K; Wadhwani NR; Treece A; Foreman NK; Alexandrescu S; Velazquez Vega J; Biegel JA; Gai X
    Mol Cancer Res; 2024 Aug; 22(8):721-729. PubMed ID: 38691518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SMARCB1 Loss in Poorly Differentiated Chordomas Drives Tumor Progression.
    Walhart TA; Vacca B; Hepperla AJ; Hamad SH; Petrongelli J; Wang Y; McKean EL; Moksa M; Cao Q; Yip S; Hirst M; Weissman BE
    Am J Pathol; 2023 Apr; 193(4):456-473. PubMed ID: 36657718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1.
    Scheil S; Brüderlein S; Liehr T; Starke H; Herms J; Schulte M; Möller P
    Genes Chromosomes Cancer; 2001 Nov; 32(3):203-11. PubMed ID: 11579460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.