BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33536456)

  • 1. First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes.
    Tikhonenkov DV; Gawryluk RMR; Mylnikov AP; Keeling PJ
    Sci Rep; 2021 Feb; 11(1):2946. PubMed ID: 33536456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids.
    Deschamps P; Lara E; Marande W; López-García P; Ekelund F; Moreira D
    Mol Biol Evol; 2011 Jan; 28(1):53-8. PubMed ID: 21030427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids.
    Butenko A; Opperdoes FR; Flegontova O; Horák A; Hampl V; Keeling P; Gawryluk RMR; Tikhonenkov D; Flegontov P; Lukeš J
    BMC Biol; 2020 Mar; 18(1):23. PubMed ID: 32122335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heme pathway evolution in kinetoplastid protists.
    Cenci U; Moog D; Curtis BA; Tanifuji G; Eme L; Lukeš J; Archibald JM
    BMC Evol Biol; 2016 May; 16(1):109. PubMed ID: 27193376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of euglenozoa.
    von der Heyden S; Chao EE; Vickerman K; Cavalier-Smith T
    J Eukaryot Microbiol; 2004; 51(4):402-16. PubMed ID: 15352322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution and diversity of kinetoplastid flagellates.
    Simpson AG; Stevens JR; Lukes J
    Trends Parasitol; 2006 Apr; 22(4):168-74. PubMed ID: 16504583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early evolution within kinetoplastids (euglenozoa), and the late emergence of trypanosomatids.
    Simpson AG; Gill EE; Callahan HA; Litaker RW; Roger AJ
    Protist; 2004 Dec; 155(4):407-22. PubMed ID: 15648721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids.
    Marande W; Lukes J; Burger G
    Eukaryot Cell; 2005 Jun; 4(6):1137-46. PubMed ID: 15947205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neobodonids are dominant kinetoplastids in the global ocean.
    Flegontova O; Flegontov P; Malviya S; Poulain J; de Vargas C; Bowler C; Lukeš J; Horák A
    Environ Microbiol; 2018 Feb; 20(2):878-889. PubMed ID: 29266706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea.
    Moreira D; López-García P; Vickerman K
    Int J Syst Evol Microbiol; 2004 Sep; 54(Pt 5):1861-1875. PubMed ID: 15388756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa.
    Vesteg M; Hadariová L; Horváth A; Estraño CE; Schwartzbach SD; Krajčovič J
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1701-1721. PubMed ID: 31095885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetoplastid phylogenetics, with special reference to the evolution of parasitic trypanosomes.
    Stevens JR
    Parasite; 2008 Sep; 15(3):226-32. PubMed ID: 18814685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolutionary history of kinetoplastids and their kinetoplasts.
    Simpson AG; Lukes J; Roger AJ
    Mol Biol Evol; 2002 Dec; 19(12):2071-83. PubMed ID: 12446799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Loss and Error-Prone RNA Editing in the Mitochondrion of Perkinsela, an Endosymbiotic Kinetoplastid.
    David V; Flegontov P; Gerasimov E; Tanifuji G; Hashimi H; Logacheva MD; Maruyama S; Onodera NT; Gray MW; Archibald JM; Lukeš J
    mBio; 2015 Dec; 6(6):e01498-15. PubMed ID: 26628723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans.
    Záhonová K; Lax G; Sinha SD; Leonard G; Richards TA; Lukeš J; Wideman JG
    BMC Biol; 2021 May; 19(1):103. PubMed ID: 34001130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure.
    Wideman JG; Lax G; Leonard G; Milner DS; Rodríguez-Martínez R; Simpson AGB; Richards TA
    Philos Trans R Soc Lond B Biol Sci; 2019 Nov; 374(1786):20190100. PubMed ID: 31587636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution.
    Harmer J; Yurchenko V; Nenarokova A; Lukeš J; Ginger ML
    Parasitology; 2018 Sep; 145(10):1311-1323. PubMed ID: 29895336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates.
    Lukes J; Hashimi H; Zíková A
    Curr Genet; 2005 Nov; 48(5):277-99. PubMed ID: 16215758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA editing in the free-living bodonid Bodo saltans.
    Blom D; de Haan A; van den Berg M; Sloof P; Jirku M; Lukes J; Benne R
    Nucleic Acids Res; 1998 Mar; 26(5):1205-13. PubMed ID: 9469817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phage Origin of Mitochondrion-Localized Family A DNA Polymerases in Kinetoplastids and Diplonemids.
    Harada R; Inagaki Y
    Genome Biol Evol; 2021 Feb; 13(2):. PubMed ID: 33432342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.