These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 33536499)

  • 1. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation.
    Park YW; Choi D; Park JE; Ahn SS; Kim H; Chang JH; Kim SH; Kim HS; Lee SK
    Sci Rep; 2021 Feb; 11(1):2913. PubMed ID: 33536499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma.
    Hu X; Wong KK; Young GS; Guo L; Wong ST
    J Magn Reson Imaging; 2011 Feb; 33(2):296-305. PubMed ID: 21274970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases.
    Basree MM; Li C; Um H; Bui AH; Liu M; Ahmed A; Tiwari P; McMillan AB; Baschnagel AM
    J Neurooncol; 2024 Jun; 168(2):307-316. PubMed ID: 38689115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging.
    Barajas RF; Chang JS; Segal MR; Parsa AT; McDermott MW; Berger MS; Cha S
    Radiology; 2009 Nov; 253(2):486-96. PubMed ID: 19789240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.
    Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS
    Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of Recurrent Glioblastoma from Delayed Radiation Necrosis by Using Voxel-based Multiparametric Analysis of MR Imaging Data.
    Yoon RG; Kim HS; Koh MJ; Shim WH; Jung SC; Kim SJ; Kim JH
    Radiology; 2017 Oct; 285(1):206-213. PubMed ID: 28535120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of circulating tumor cell detection in differentiating tumor recurrence from treatment necrosis of brain gliomas.
    Gao F; Zhao W; Li M; Ren X; Jiang H; Cui Y; Lin S
    Biosci Trends; 2021 May; 15(2):107-117. PubMed ID: 33952802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T
    Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB
    BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques.
    Bathla G; Priya S; Liu Y; Ward C; Le NH; Soni N; Maheshwarappa RP; Monga V; Zhang H; Sonka M
    Eur Radiol; 2021 Nov; 31(11):8703-8713. PubMed ID: 33890149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiparametric-MRI-Based Radiomics Model for Differentiating Primary Central Nervous System Lymphoma From Glioblastoma: Development and Cross-Vendor Validation.
    Xia W; Hu B; Li H; Geng C; Wu Q; Yang L; Yin B; Gao X; Li Y; Geng D
    J Magn Reson Imaging; 2021 Jan; 53(1):242-250. PubMed ID: 32864825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation.
    Kang D; Park JE; Kim YH; Kim JH; Oh JY; Kim J; Kim Y; Kim ST; Kim HS
    Neuro Oncol; 2018 Aug; 20(9):1251-1261. PubMed ID: 29438500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-weighted imaging and arterial spin labeling radiomics features may improve differentiation between radiation-induced brain injury and glioma recurrence.
    Zhang J; Wu Y; Wang Y; Zhang X; Lei Y; Zhu G; Mao C; Zhang L; Ma L
    Eur Radiol; 2023 May; 33(5):3332-3342. PubMed ID: 36576544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiparametric MRI for Differentiation of Radiation Necrosis From Recurrent Tumor in Patients With Treated Glioblastoma.
    Nael K; Bauer AH; Hormigo A; Lemole M; Germano IM; Puig J; Stea B
    AJR Am J Roentgenol; 2018 Jan; 210(1):18-23. PubMed ID: 28952810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas.
    Hojjati M; Badve C; Garg V; Tatsuoka C; Rogers L; Sloan A; Faulhaber P; Ros PR; Wolansky LJ
    J Neuroimaging; 2018 Jan; 28(1):118-125. PubMed ID: 28718993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrent glioblastoma: optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging.
    Chung WJ; Kim HS; Kim N; Choi CG; Kim SJ
    Radiology; 2013 Nov; 269(2):561-8. PubMed ID: 23878286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of IVIM-DWI and 3D-ASL for differentiating true progression from pseudoprogression of Glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial.
    Liu ZC; Yan LF; Hu YC; Sun YZ; Tian Q; Nan HY; Yu Y; Sun Q; Wang W; Cui GB
    BMC Med Imaging; 2017 Feb; 17(1):10. PubMed ID: 28143434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2.
    Chen T; Li M; Gu Y; Zhang Y; Yang S; Wei C; Wu J; Li X; Zhao W; Shen J
    J Magn Reson Imaging; 2019 Mar; 49(3):875-884. PubMed ID: 30230108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings.
    Shiradkar R; Ghose S; Jambor I; Taimen P; Ettala O; Purysko AS; Madabhushi A
    J Magn Reson Imaging; 2018 Dec; 48(6):1626-1636. PubMed ID: 29734484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.