These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33536930)
1. Energy Cost of Force Production After a Stretch-Shortening Cycle in Skinned Muscle Fibers: Does Muscle Efficiency Increase? Joumaa V; Fukutani A; Herzog W Front Physiol; 2020; 11():567538. PubMed ID: 33536930 [TBL] [Abstract][Full Text] [Related]
2. Energy cost of isometric force production after active shortening in skinned muscle fibres. Joumaa V; Fitzowich A; Herzog W J Exp Biol; 2017 Apr; 220(Pt 8):1509-1515. PubMed ID: 28232399 [TBL] [Abstract][Full Text] [Related]
3. Influence of residual force enhancement and elongation of attached cross-bridges on stretch-shortening cycle in skinned muscle fibers. Fukutani A; Joumaa V; Herzog W Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29180479 [TBL] [Abstract][Full Text] [Related]
4. Influence of stretch magnitude on the stretch-shortening cycle in skinned muscle fibres. Fukutani A; Herzog W J Exp Biol; 2019 Jun; 222(Pt 13):. PubMed ID: 31171600 [TBL] [Abstract][Full Text] [Related]
5. Force depression following a stretch-shortening cycle depends on the amount of residual force enhancement established in the initial stretch phase. Fortuna R; Goecking T; Seiberl W; Herzog W Physiol Rep; 2019 Aug; 7(16):e14188. PubMed ID: 31420953 [TBL] [Abstract][Full Text] [Related]
6. Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles. Tomalka A; Weidner S; Hahn D; Seiberl W; Siebert T Front Physiol; 2020; 11():921. PubMed ID: 32848862 [TBL] [Abstract][Full Text] [Related]
7. Differences in stretch-shortening cycle and residual force enhancement between muscles. Fukutani A; Herzog W J Biomech; 2020 Nov; 112():110040. PubMed ID: 32980750 [TBL] [Abstract][Full Text] [Related]
8. Energy cost of force production is reduced after active stretch in skinned muscle fibres. Joumaa V; Herzog W J Biomech; 2013 Apr; 46(6):1135-9. PubMed ID: 23422864 [TBL] [Abstract][Full Text] [Related]
9. Contribution of Stretch-Induced Force Enhancement to Increased Performance in Maximal Voluntary and Submaximal Artificially Activated Stretch-Shortening Muscle Action. Groeber M; Stafilidis S; Seiberl W; Baca A Front Physiol; 2020; 11():592183. PubMed ID: 33281623 [TBL] [Abstract][Full Text] [Related]
10. Residual Force Enhancement Is Attenuated in a Shortening Magnitude-dependent Manner. Fukutani A; Herzog W Med Sci Sports Exerc; 2018 Oct; 50(10):2007-2014. PubMed ID: 29771823 [TBL] [Abstract][Full Text] [Related]
11. Force re-development after shortening reveals a role for titin in stretch-shortening performance enhancement in skinned muscle fibres. Tomalka A; Weidner S; Hahn D; Seiberl W; Siebert T J Exp Biol; 2024 Sep; 227(17):. PubMed ID: 39119673 [TBL] [Abstract][Full Text] [Related]
12. The stretch-shortening cycle effect is prominent in the inhibited force state. Fukutani A; Herzog W J Biomech; 2021 Jan; 115():110136. PubMed ID: 33248703 [TBL] [Abstract][Full Text] [Related]
13. Residual force enhancement contributes to increased performance during stretch-shortening cycles of human plantar flexor muscles in vivo. Hahn D; Riedel TN J Biomech; 2018 Aug; 77():190-193. PubMed ID: 29935734 [TBL] [Abstract][Full Text] [Related]
14. Unlocking the benefit of active stretch: the eccentric muscle action, not the preload, maximizes muscle-tendon unit stretch-shortening cycle performance. Goecking T; Holzer D; Hahn D; Siebert T; Seiberl W J Appl Physiol (1985); 2024 Aug; 137(2):394-408. PubMed ID: 38932683 [TBL] [Abstract][Full Text] [Related]
15. Non-cross Bridge Viscoelastic Elements Contribute to Muscle Force and Work During Stretch-Shortening Cycles: Evidence From Whole Muscles and Permeabilized Fibers. Hessel AL; Monroy JA; Nishikawa KC Front Physiol; 2021; 12():648019. PubMed ID: 33854441 [TBL] [Abstract][Full Text] [Related]
16. Effect of active shortening and stretching on the rate of force re-development in rabbit psoas muscle fibres. Ames SR; Joumaa V; Herzog W J Exp Biol; 2022 Nov; 225(22):. PubMed ID: 36268629 [TBL] [Abstract][Full Text] [Related]
17. The stretch-shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis. Seiberl W; Power GA; Herzog W; Hahn D Physiol Rep; 2015 May; 3(5):. PubMed ID: 25975646 [TBL] [Abstract][Full Text] [Related]
18. Stretch-shortening cycles protect against the age-related loss of power generation in rat single muscle fibres. Patterson MA; Hinks A; Njai BS; Dalton BE; Hubbard EF; Power GA Exp Gerontol; 2024 Jun; 190():112423. PubMed ID: 38608790 [TBL] [Abstract][Full Text] [Related]
19. On sarcomere length stability during isometric contractions before and after active stretching. Johnston K; Moo EK; Jinha A; Herzog W J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31704896 [TBL] [Abstract][Full Text] [Related]
20. Effect of Active Lengthening and Shortening on Small-Angle X-ray Reflections in Skinned Skeletal Muscle Fibres. Joumaa V; Smith IC; Fukutani A; Leonard TR; Ma W; Mijailovich SM; Irving TC; Herzog W Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]