These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 3353715)

  • 1. Tertiary structure is a principal determinant to protein deamidation.
    Kossiakoff AA
    Science; 1988 Apr; 240(4849):191-4. PubMed ID: 3353715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins.
    Wright HT
    Protein Eng; 1991 Feb; 4(3):283-94. PubMed ID: 1649998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific glutamine and asparagine residues of gamma-S crystallin are resistant to in vivo deamidation.
    Takemoto L; Boyle D
    J Biol Chem; 2000 Aug; 275(34):26109-12. PubMed ID: 10843993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common ring motifs in proteins involving asparagine or glutamine amide groups hydrogen-bonded to main-chain atoms.
    Le Questel JY; Morris DG; Maccallum PH; Poet R; Milner-White EJ
    J Mol Biol; 1993 Jun; 231(3):888-96. PubMed ID: 8515458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does deamidation cause protein unfolding? A top-down tandem mass spectrometry study.
    Soulby AJ; Heal JW; Barrow MP; Roemer RA; O'Connor PB
    Protein Sci; 2015 May; 24(5):850-60. PubMed ID: 25653127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why does Asn71 deamidate faster than Asn15 in the enzyme triosephosphate isomerase? Answers from microsecond molecular dynamics simulation and QM/MM free energy calculations.
    Ugur I; Marion A; Aviyente V; Monard G
    Biochemistry; 2015 Feb; 54(6):1429-39. PubMed ID: 25602614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation.
    Word JM; Lovell SC; Richardson JS; Richardson DC
    J Mol Biol; 1999 Jan; 285(4):1735-47. PubMed ID: 9917408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins.
    Wright HT
    Crit Rev Biochem Mol Biol; 1991; 26(1):1-52. PubMed ID: 1678690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of glutamine deamidation in a long, repetitive protein polymer via bioconjugate capillary electrophoresis.
    Won JI; Meagher RJ; Barron AE
    Biomacromolecules; 2004; 5(2):618-27. PubMed ID: 15003029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relative rates of glutamine and asparagine deamidation in glucagon fragment 22-29 under acidic conditions.
    Joshi AB; Kirsch LE
    J Pharm Sci; 2002 Nov; 91(11):2331-45. PubMed ID: 12379918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous deamidation of a protein antibiotic, neocarzinostatin, at weakly acidic pH. Conversion to a homologous inactive preneocarzinostatin due to change of asparagine 83 to aspartic acid 83 accompanied by conformational and biological alterations.
    Maeda H; Kuromizu K
    J Biochem; 1977 Jan; 81(1):25-35. PubMed ID: 14934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective (15)N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy.
    Cao C; Chen JL; Yang Y; Huang F; Otting G; Su XC
    J Biomol NMR; 2014 Aug; 59(4):251-61. PubMed ID: 25002097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of Deamidation of Asparagine Residues and Effects of Main-Chain Conformation on Activation Energy.
    Kato K; Nakayoshi T; Kurimoto E; Oda A
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32987875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction mechanism of deamidation of asparaginyl residues in peptides: effect of solvent molecules.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2006 Jul; 110(27):8354-65. PubMed ID: 16821819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein asparagine deamidation prediction based on structures with machine learning methods.
    Jia L; Sun Y
    PLoS One; 2017; 12(7):e0181347. PubMed ID: 28732052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme.
    Buck M; Boyd J; Redfield C; MacKenzie DA; Jeenes DJ; Archer DB; Dobson CM
    Biochemistry; 1995 Mar; 34(12):4041-55. PubMed ID: 7696270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-contacts in Asx and Glx residues of high-resolution protein structures: role of local environment and tertiary interactions.
    Pal TK; Sankararamakrishnan R
    J Mol Graph Model; 2008 Aug; 27(1):20-33. PubMed ID: 18343699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Site-Specific Asparagine Deamidation in Islet Amyloid Polypeptide Amyloidogenesis: Key Contributions of Residues 14 and 21.
    Nguyen PT; Zottig X; Sebastiao M; Bourgault S
    Biochemistry; 2017 Jul; 56(29):3808-3817. PubMed ID: 28665109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.