These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 33538756)

  • 1. Bubbles in microfluidics: an all-purpose tool for micromanipulation.
    Li Y; Liu X; Huang Q; Ohta AT; Arai T
    Lab Chip; 2021 Mar; 21(6):1016-1035. PubMed ID: 33538756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.
    Li H; Zhang J; Zhang N; Kershaw J; Wang L
    J Microencapsul; 2016 Dec; 33(8):712-717. PubMed ID: 27632892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves.
    Liu Y; Yin Q; Luo Y; Huang Z; Cheng Q; Zhang W; Zhou B; Zhou Y; Ma Z
    Ultrason Sonochem; 2023 Jun; 96():106441. PubMed ID: 37216791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconventional acoustic approaches for localized and designed micromanipulation.
    Kolesnik K; Xu M; Lee PVS; Rajagopal V; Collins DJ
    Lab Chip; 2021 Aug; 21(15):2837-2856. PubMed ID: 34268539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly.
    Zhou Y; Dai L; Jiao N
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation.
    Khan AH; Jiang X; Kaushik A; Nair HS; Edirisinghe M; Mercado-Shekhar KP; Shekhar H; Dalvi SV
    Langmuir; 2022 Aug; 38(33):10288-10304. PubMed ID: 35943351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review.
    Pulsipher KW; Hammer DA; Lee D; Sehgal CM
    Ultrasound Med Biol; 2018 Dec; 44(12):2441-2460. PubMed ID: 30241729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillating bubbles: a versatile tool for lab on a chip applications.
    Hashmi A; Yu G; Reilly-Collette M; Heiman G; Xu J
    Lab Chip; 2012 Nov; 12(21):4216-27. PubMed ID: 22864283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound assisted particle and cell manipulation on-chip.
    Mulvana H; Cochran S; Hill M
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1600-10. PubMed ID: 23906935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Facile Single-Phase-Fluid-Driven Bubble Microfluidic Generator for Potential Detection of Viruses Suspended in Air.
    Man J; Man L; Zhou C; Li J; Liang S; Zhang S; Li J
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic bubble sorting for ultrasound contrast agent enrichment.
    Segers T; Versluis M
    Lab Chip; 2014 May; 14(10):1705-14. PubMed ID: 24651248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bubble-enhanced ultrasonic microfluidic chip for rapid DNA fragmentation.
    Sun L; Lehnert T; Li S; Gijs MAM
    Lab Chip; 2022 Feb; 22(3):560-572. PubMed ID: 34989733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device.
    Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E
    J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes.
    Salari A; Gnyawali V; Griffiths IM; Karshafian R; Kolios MC; Tsai SSH
    Soft Matter; 2017 Nov; 13(46):8796-8806. PubMed ID: 29135012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amontons-Coulomb-like slip dynamics in acousto-microfluidics.
    Quelennec A; Gorman JJ; Reyes DR
    Nat Commun; 2022 Mar; 13(1):1429. PubMed ID: 35318314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of biological objects using acoustic bubbles: a review.
    Chen Y; Lee S
    Integr Comp Biol; 2014 Dec; 54(6):959-68. PubMed ID: 24961435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel preparation techniques for controlling microbubble uniformity: a comparison.
    Stride E; Edirisinghe M
    Med Biol Eng Comput; 2009 Aug; 47(8):883-92. PubMed ID: 19434435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamentals, biomedical applications and future potential of micro-scale cavitation-a review.
    Seyedmirzaei Sarraf S; Rokhsar Talabazar F; Namli I; Maleki M; Sheibani Aghdam A; Gharib G; Grishenkov D; Ghorbani M; Koşar A
    Lab Chip; 2022 Jun; 22(12):2237-2258. PubMed ID: 35531747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embedded Microbubbles for Acoustic Manipulation of Single Cells and Microfluidic Applications.
    Läubli NF; Gerlt MS; Wüthrich A; Lewis RTM; Shamsudhin N; Kutay U; Ahmed D; Dual J; Nelson BJ
    Anal Chem; 2021 Jul; 93(28):9760-9770. PubMed ID: 34228921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.