These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 33538820)

  • 21. iDNA-ABT: advanced deep learning model for detecting DNA methylation with adaptive features and transductive information maximization.
    Yu Y; He W; Jin J; Xiao G; Cui L; Zeng R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4603-4610. PubMed ID: 34601568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. UDSMProt: universal deep sequence models for protein classification.
    Strodthoff N; Wagner P; Wenzel M; Samek W
    Bioinformatics; 2020 Apr; 36(8):2401-2409. PubMed ID: 31913448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transformers-sklearn: a toolkit for medical language understanding with transformer-based models.
    Yang F; Wang X; Ma H; Li J
    BMC Med Inform Decis Mak; 2021 Jul; 21(Suppl 2):90. PubMed ID: 34330244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do syntactic trees enhance Bidirectional Encoder Representations from Transformers (BERT) models for chemical-drug relation extraction?
    Tang A; Deléger L; Bossy R; Zweigenbaum P; Nédellec C
    Database (Oxford); 2022 Aug; 2022():. PubMed ID: 36006843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. JEDI: circular RNA prediction based on junction encoders and deep interaction among splice sites.
    Jiang JY; Ju CJ; Hao J; Chen M; Wang W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i289-i298. PubMed ID: 34252942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple sequence alignment-based RNA language model and its application to structural inference.
    Zhang Y; Lang M; Jiang J; Gao Z; Xu F; Litfin T; Chen K; Singh J; Huang X; Song G; Tian Y; Zhan J; Chen J; Zhou Y
    Nucleic Acids Res; 2024 Jan; 52(1):e3. PubMed ID: 37941140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Knowledge Graph Completion for the Chinese Text of Cultural Relics Based on Bidirectional Encoder Representations from Transformers with Entity-Type Information.
    Zhang M; Geng G; Zeng S; Jia H
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Literature mining discerns latent disease-gene relationships.
    Rai P; Jain A; Kumar S; Sharma D; Jha N; Chawla S; Raj A; Gupta A; Poonia S; Majumdar A; Chakraborty T; Ahuja G; Sengupta D
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38608194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Semantically Similar Sentences in Clinical Notes: Iterative Intermediate Training Using Multi-Task Learning.
    Mahajan D; Poddar A; Liang JJ; Lin YT; Prager JM; Suryanarayanan P; Raghavan P; Tsou CH
    JMIR Med Inform; 2020 Nov; 8(11):e22508. PubMed ID: 33245284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BERT-5mC: an interpretable model for predicting 5-methylcytosine sites of DNA based on BERT.
    Wang S; Liu Y; Liu Y; Zhang Y; Zhu X
    PeerJ; 2023; 11():e16600. PubMed ID: 38089911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving language model of human genome for DNA-protein binding prediction based on task-specific pre-training.
    Luo H; Shan W; Chen C; Ding P; Luo L
    Interdiscip Sci; 2023 Mar; 15(1):32-43. PubMed ID: 36136096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer's Disease Based on Speech.
    Balagopalan A; Eyre B; Robin J; Rudzicz F; Novikova J
    Front Aging Neurosci; 2021; 13():635945. PubMed ID: 33986655
    [No Abstract]   [Full Text] [Related]  

  • 33. BERT4Bitter: a bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides.
    Charoenkwan P; Nantasenamat C; Hasan MM; Manavalan B; Shoombuatong W
    Bioinformatics; 2021 Sep; 37(17):2556-2562. PubMed ID: 33638635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepEventMine: end-to-end neural nested event extraction from biomedical texts.
    Trieu HL; Tran TT; Duong KNA; Nguyen A; Miwa M; Ananiadou S
    Bioinformatics; 2020 Dec; 36(19):4910-4917. PubMed ID: 33141147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. POOE: predicting oomycete effectors based on a pre-trained large protein language model.
    Zhao M; Lei C; Zhou K; Huang Y; Fu C; Yang S; Zhang Z
    mSystems; 2024 Jan; 9(1):e0100423. PubMed ID: 38078741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unsupervised Pre-Training for Detection Transformers.
    Dai Z; Cai B; Lin Y; Chen J
    IEEE Trans Pattern Anal Mach Intell; 2023 Nov; 45(11):12772-12782. PubMed ID: 36269904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic extraction of 12 cardiovascular concepts from German discharge letters using pre-trained language models.
    Richter-Pechanski P; Geis NA; Kiriakou C; Schwab DM; Dieterich C
    Digit Health; 2021; 7():20552076211057662. PubMed ID: 34868618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Benchmarking for biomedical natural language processing tasks with a domain specific ALBERT.
    Naseem U; Dunn AG; Khushi M; Kim J
    BMC Bioinformatics; 2022 Apr; 23(1):144. PubMed ID: 35448946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovering Thematically Coherent Biomedical Documents Using Contextualized Bidirectional Encoder Representations from Transformers-Based Clustering.
    Davagdorj K; Wang L; Li M; Pham VH; Ryu KH; Theera-Umpon N
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MSTL-Kace: Prediction of Prokaryotic Lysine Acetylation Sites Based on Multistage Transfer Learning Strategy.
    Wang GA; Yan X; Li X; Liu Y; Xia J; Zhu X
    ACS Omega; 2023 Nov; 8(44):41930-41942. PubMed ID: 37969991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.