BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 33539514)

  • 1. A comprehensive overview and critical evaluation of gene regulatory network inference technologies.
    Zhao M; He W; Tang J; Zou Q; Guo F
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33539514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of Gene Regulatory Network Based on Local Bayesian Networks.
    Liu F; Zhang SW; Guo WF; Wei ZG; Chen L
    PLoS Comput Biol; 2016 Aug; 12(8):e1005024. PubMed ID: 27479082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.
    Xing L; Guo M; Liu X; Wang C; Wang L; Zhang Y
    BMC Genomics; 2017 Nov; 18(Suppl 9):844. PubMed ID: 29219084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian Data Fusion of Gene Expression and Histone Modification Profiles for Inference of Gene Regulatory Network.
    Chen H; Maduranga DAK; Mundra PA; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):516-525. PubMed ID: 30207963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental gene regulatory network connections predicted by machine learning from gene expression data alone.
    Zhang J; Ibrahim F; Najmulski E; Katholos G; Altarawy D; Heath LS; Tulin SL
    PLoS One; 2021; 16(12):e0261926. PubMed ID: 34962963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-order dynamic Bayesian Network learning with hidden common causes for causal gene regulatory network.
    Lo LY; Wong ML; Lee KH; Leung KS
    BMC Bioinformatics; 2015 Nov; 16():395. PubMed ID: 26608050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring regulatory networks from expression data using tree-based methods.
    Huynh-Thu VA; Irrthum A; Wehenkel L; Geurts P
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20927193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised learning of gene-regulatory networks based on graph distance profiles of transcriptomics data.
    Razaghi-Moghadam Z; Nikoloski Z
    NPJ Syst Biol Appl; 2020 Jun; 6(1):21. PubMed ID: 32606380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal Gene Expression Profiling and Network Inference: A Roadmap for Analysis, Visualization, and Key Gene Identification.
    Spurney R; Schwartz M; Gobble M; Sozzani R; Van den Broeck L
    Methods Mol Biol; 2021; 2328():47-65. PubMed ID: 34251619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse engineering genetic networks using nonlinear saturation kinetics.
    Kizhakkethil Youseph AS; Chetty M; Karmakar G
    Biosystems; 2019 Aug; 182():30-41. PubMed ID: 31185246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HSCVFNT: Inference of Time-Delayed Gene Regulatory Network Based on Complex-Valued Flexible Neural Tree Model.
    Yang B; Chen Y; Zhang W; Lv J; Bao W; Huang DS
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MMFGRN: a multi-source multi-model fusion method for gene regulatory network reconstruction.
    He W; Tang J; Zou Q; Guo F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33939795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Model Integration Network Inference Algorithm with Clustering and Hub Genes Finding.
    Li W; Zhang W; Zhang J
    Mol Inform; 2020 May; 39(5):e1900075. PubMed ID: 31990443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks.
    Malekpour SA; Alizad-Rahvar AR; Sadeghi M
    BMC Bioinformatics; 2020 Jul; 21(1):318. PubMed ID: 32690031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational methods for Gene Regulatory Networks reconstruction and analysis: A review.
    Delgado FM; Gómez-Vela F
    Artif Intell Med; 2019 Apr; 95():133-145. PubMed ID: 30420244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.