These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33539514)

  • 81. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A Fast and Furious Bayesian Network and Its Application of Identifying Colon Cancer to Liver Metastasis Gene Regulatory Networks.
    Liu E; Li J; Kinnebrew GH; Zhang P; Zhang Y; Cheng L; Li L
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1325-1335. PubMed ID: 31581091
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Combining tree-based and dynamical systems for the inference of gene regulatory networks.
    Huynh-Thu VA; Sanguinetti G
    Bioinformatics; 2015 May; 31(10):1614-22. PubMed ID: 25573916
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks.
    Wang J; Ma A; Ma Q; Xu D; Joshi T
    Comput Struct Biotechnol J; 2020; 18():3335-3343. PubMed ID: 33294129
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Comparing statistical methods for constructing large scale gene networks.
    Allen JD; Xie Y; Chen M; Girard L; Xiao G
    PLoS One; 2012; 7(1):e29348. PubMed ID: 22272232
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Fitting Boolean networks from steady state perturbation data.
    Almudevar A; McCall MN; McMurray H; Land H
    Stat Appl Genet Mol Biol; 2011 Oct; 10(1):. PubMed ID: 23089817
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Statistical and Machine Learning Approaches to Predict Gene Regulatory Networks From Transcriptome Datasets.
    Mochida K; Koda S; Inoue K; Nishii R
    Front Plant Sci; 2018; 9():1770. PubMed ID: 30555503
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Inference of gene regulatory networks with multi-objective cellular genetic algorithm.
    García-Nieto J; Nebro AJ; Aldana-Montes JF
    Comput Biol Chem; 2019 Jun; 80():409-418. PubMed ID: 31128452
    [TBL] [Abstract][Full Text] [Related]  

  • 89. BRANE Cut: biologically-related a priori network enhancement with graph cuts for gene regulatory network inference.
    Pirayre A; Couprie C; Bidard F; Duval L; Pesquet JC
    BMC Bioinformatics; 2015 Nov; 16():368. PubMed ID: 26537179
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Inference of differential gene regulatory networks based on gene expression and genetic perturbation data.
    Zhou X; Cai X
    Bioinformatics; 2020 Jan; 36(1):197-204. PubMed ID: 31263873
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations.
    Li Y; Liu D; Li T; Zhu Y
    BMC Bioinformatics; 2020 Jan; 21(1):12. PubMed ID: 31918656
    [TBL] [Abstract][Full Text] [Related]  

  • 92. LegumeGRN: a gene regulatory network prediction server for functional and comparative studies.
    Wang M; Verdier J; Benedito VA; Tang Y; Murray JD; Ge Y; Becker JD; Carvalho H; Rogers C; Udvardi M; He J
    PLoS One; 2013; 8(7):e67434. PubMed ID: 23844010
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Identifying biomarkers for breast cancer by gene regulatory network rewiring.
    Wang Y; Liu ZP
    BMC Bioinformatics; 2022 Jan; 22(Suppl 12):308. PubMed ID: 35045805
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A Fast PC Algorithm for High Dimensional Causal Discovery with Multi-Core PCs.
    Le TD; Hoang T; Li J; Liu L; Liu H; Hu S
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1483-1495. PubMed ID: 27429444
    [TBL] [Abstract][Full Text] [Related]  

  • 95. NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference.
    Zhang X; Liu K; Liu ZP; Duval B; Richer JM; Zhao XM; Hao JK; Chen L
    Bioinformatics; 2013 Jan; 29(1):106-13. PubMed ID: 23080116
    [TBL] [Abstract][Full Text] [Related]  

  • 96. GeRNet: a gene regulatory network tool.
    Dussaut JS; Gallo CA; Cravero F; Martínez MJ; Carballido JA; Ponzoni I
    Biosystems; 2017 Dec; 162():1-11. PubMed ID: 28860069
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.
    Jafari M; Ghavami B; Sattari V
    Artif Intell Med; 2017 Jun; 79():15-27. PubMed ID: 28602483
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Knowledge of the perturbation design is essential for accurate gene regulatory network inference.
    Seçilmiş D; Hillerton T; Tjärnberg A; Nelander S; Nordling TEM; Sonnhammer ELL
    Sci Rep; 2022 Oct; 12(1):16531. PubMed ID: 36192495
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Time Delayed Causal Gene Regulatory Network Inference with Hidden Common Causes.
    Lo LY; Wong ML; Lee KH; Leung KS
    PLoS One; 2015; 10(9):e0138596. PubMed ID: 26394325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.