BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 33539625)

  • 1. Regression dynamic causal modeling for resting-state fMRI.
    Frässle S; Harrison SJ; Heinzle J; Clementz BA; Tamminga CA; Sweeney JA; Gershon ES; Keshavan MS; Pearlson GD; Powers A; Stephan KE
    Hum Brain Mapp; 2021 May; 42(7):2159-2180. PubMed ID: 33539625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generative model of whole-brain effective connectivity.
    Frässle S; Lomakina EI; Kasper L; Manjaly ZM; Leff A; Pruessmann KP; Buhmann JM; Stephan KE
    Neuroimage; 2018 Oct; 179():505-529. PubMed ID: 29807151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression DCM for fMRI.
    Frässle S; Lomakina EI; Razi A; Friston KJ; Buhmann JM; Stephan KE
    Neuroimage; 2017 Jul; 155():406-421. PubMed ID: 28259780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI.
    Almgren H; Van de Steen F; Razi A; Friston K; Marinazzo D
    Neuroimage; 2020 Mar; 208():116435. PubMed ID: 31816423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-brain estimates of directed connectivity for human connectomics.
    Frässle S; Manjaly ZM; Do CT; Kasper L; Pruessmann KP; Stephan KE
    Neuroimage; 2021 Jan; 225():117491. PubMed ID: 33115664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test-retest reliability of regression dynamic causal modeling.
    Frässle S; Stephan KE
    Netw Neurosci; 2022 Feb; 6(1):135-160. PubMed ID: 35356192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construct validation of a DCM for resting state fMRI.
    Razi A; Kahan J; Rees G; Friston KJ
    Neuroimage; 2015 Feb; 106():1-14. PubMed ID: 25463471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between EEG and fMRI connectomes is reproducible across simultaneous EEG-fMRI studies from 1.5T to 7T.
    Wirsich J; Jorge J; Iannotti GR; Shamshiri EA; Grouiller F; Abreu R; Lazeyras F; Giraud AL; Gruetter R; Sadaghiani S; Vulliémoz S
    Neuroimage; 2021 May; 231():117864. PubMed ID: 33592241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse DCM for whole-brain effective connectivity from resting-state fMRI data.
    Prando G; Zorzi M; Bertoldo A; Corbetta M; Zorzi M; Chiuso A
    Neuroimage; 2020 Mar; 208():116367. PubMed ID: 31812714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks.
    Elliott ML; Knodt AR; Cooke M; Kim MJ; Melzer TR; Keenan R; Ireland D; Ramrakha S; Poulton R; Caspi A; Moffitt TE; Hariri AR
    Neuroimage; 2019 Apr; 189():516-532. PubMed ID: 30708106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
    Taghia J; Ryali S; Chen T; Supekar K; Cai W; Menon V
    Neuroimage; 2017 Jul; 155():271-290. PubMed ID: 28267626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boost in Test-Retest Reliability in Resting State fMRI with Predictive Modeling.
    Taxali A; Angstadt M; Rutherford S; Sripada C
    Cereb Cortex; 2021 May; 31(6):2822-2833. PubMed ID: 33447841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the complementarity of resting-state networks derived from dynamic [
    Ionescu TM; Amend M; Hafiz R; Biswal BB; Wehrl HF; Herfert K; Pichler BJ
    Neuroimage; 2021 Aug; 236():118045. PubMed ID: 33848625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral dynamic causal modelling of resting-state fMRI: an exploratory study relating effective brain connectivity in the default mode network to genetics.
    Nie Y; Opoku E; Yasmin L; Song Y; Wang J; Wu S; Scarapicchia V; Gawryluk J; Wang L; Cao J; Nathoo FS
    Stat Appl Genet Mol Biol; 2020 Aug; 19(3):. PubMed ID: 32866136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed functional connectivity using dynamic graphical models.
    Schwab S; Harbord R; Zerbi V; Elliott L; Afyouni S; Smith JQ; Woolrich MW; Smith SM; Nichols TE
    Neuroimage; 2018 Jul; 175():340-353. PubMed ID: 29625233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic effective connectivity in resting state fMRI.
    Park HJ; Friston KJ; Pae C; Park B; Razi A
    Neuroimage; 2018 Oct; 180(Pt B):594-608. PubMed ID: 29158202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation and validation of individualized dynamic brain models with resting state fMRI.
    Singh MF; Braver TS; Cole MW; Ching S
    Neuroimage; 2020 Nov; 221():117046. PubMed ID: 32603858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain networks, dimensionality, and global signal averaging in resting-state fMRI: Hierarchical network structure results in low-dimensional spatiotemporal dynamics.
    Gotts SJ; Gilmore AW; Martin A
    Neuroimage; 2020 Jan; 205():116289. PubMed ID: 31629827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resting state connectivity differences in eyes open versus eyes closed conditions.
    Agcaoglu O; Wilson TW; Wang YP; Stephen J; Calhoun VD
    Hum Brain Mapp; 2019 Jun; 40(8):2488-2498. PubMed ID: 30720907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.