These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 33539768)

  • 1. An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants.
    Guest JD; Vreven T; Zhou J; Moal I; Jeliazkov JR; Gray JJ; Weng Z; Pierce BG
    Structure; 2021 Jun; 29(6):606-621.e5. PubMed ID: 33539768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational design of protein antigens that interact with the CDR H3 loop of HIV broadly neutralizing antibody 2F5.
    Azoitei ML; Ban YA; Kalyuzhny O; Guenaga J; Schroeter A; Porter J; Wyatt R; Schief WR
    Proteins; 2014 Oct; 82(10):2770-82. PubMed ID: 25043744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ABAG-docking benchmark: a non-redundant structure benchmark dataset for antibody-antigen computational docking.
    Zhao N; Han B; Zhao C; Xu J; Gong X
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paratope states in solution improve structure prediction and docking.
    Fernández-Quintero ML; Vangone A; Loeffler JR; Seidler CA; Georges G; Liedl KR
    Structure; 2022 Mar; 30(3):430-440.e3. PubMed ID: 34838187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based cross-docking analysis of antibody-antigen interactions.
    Kilambi KP; Gray JJ
    Sci Rep; 2017 Aug; 7(1):8145. PubMed ID: 28811664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RosettaCM for antibodies with very long HCDR3s and low template availability.
    Kodali P; Schoeder CT; Schmitz S; Crowe JE; Meiler J
    Proteins; 2021 Nov; 89(11):1458-1472. PubMed ID: 34176159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A benchmark for evaluation of structure-based online tools for antibody-antigen binding affinity.
    Xu J; Gong J; Bo X; Tong Y; Ren Z; Ni M
    Biophys Chem; 2024 Aug; 311():107253. PubMed ID: 38768531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2.
    Vreven T; Moal IH; Vangone A; Pierce BG; Kastritis PL; Torchala M; Chaleil R; Jiménez-García B; Bates PA; Fernandez-Recio J; Bonvin AM; Weng Z
    J Mol Biol; 2015 Sep; 427(19):3031-41. PubMed ID: 26231283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward rational antibody design: recent advancements in molecular dynamics simulations.
    Yamashita T
    Int Immunol; 2018 Apr; 30(4):133-140. PubMed ID: 29346652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AttABseq: an attention-based deep learning prediction method for antigen-antibody binding affinity changes based on protein sequences.
    Jin R; Ye Q; Wang J; Cao Z; Jiang D; Wang T; Kang Y; Xu W; Hsieh CY; Hou T
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody-protein interactions: benchmark datasets and prediction tools evaluation.
    Ponomarenko JV; Bourne PE
    BMC Struct Biol; 2007 Oct; 7():64. PubMed ID: 17910770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Antibody-Antigen Complexes by Information-Driven Docking.
    Ambrosetti F; Jiménez-García B; Roel-Touris J; Bonvin AMJJ
    Structure; 2020 Jan; 28(1):119-129.e2. PubMed ID: 31727476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IsAb: a computational protocol for antibody design.
    Liang T; Chen H; Yuan J; Jiang C; Hao Y; Wang Y; Feng Z; Xie XQ
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models.
    Sircar A; Gray JJ
    PLoS Comput Biol; 2010 Jan; 6(1):e1000644. PubMed ID: 20098500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes in antibody Fab fragments upon binding and their consequences on the performance of docking algorithms.
    Barozet A; Bianciotto M; Siméon T; Minoux H; Cortés J
    Immunol Lett; 2018 Aug; 200():5-15. PubMed ID: 29885326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human germline antibody gene segments encode polyspecific antibodies.
    Willis JR; Briney BS; DeLuca SL; Crowe JE; Meiler J
    PLoS Comput Biol; 2013 Apr; 9(4):e1003045. PubMed ID: 23637590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regression analysis to select native-like structures from decoys of antigen-antibody docking].
    Chen Z; Chi X; Fan P; Zhang G; Wang M; Yu C; Chen W
    Sheng Wu Gong Cheng Xue Bao; 2018 Jun; 34(6):993-1001. PubMed ID: 29943545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Computationally Optimized Broadly Reactive Antigen Subtype-Specific Influenza Vaccine Strategy Elicits Unique Potent Broadly Neutralizing Antibodies against Hemagglutinin.
    Sautto GA; Kirchenbaum GA; Abreu RB; Ecker JW; Pierce SR; Kleanthous H; Ross TM
    J Immunol; 2020 Jan; 204(2):375-385. PubMed ID: 31811019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving B-cell epitope prediction and its application to global antibody-antigen docking.
    Krawczyk K; Liu X; Baker T; Shi J; Deane CM
    Bioinformatics; 2014 Aug; 30(16):2288-94. PubMed ID: 24753488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design.
    Schoeder CT; Schmitz S; Adolf-Bryfogle J; Sevy AM; Finn JA; Sauer MF; Bozhanova NG; Mueller BK; Sangha AK; Bonet J; Sheehan JH; Kuenze G; Marlow B; Smith ST; Woods H; Bender BJ; Martina CE; Del Alamo D; Kodali P; Gulsevin A; Schief WR; Correia BE; Crowe JE; Meiler J; Moretti R
    Biochemistry; 2021 Mar; 60(11):825-846. PubMed ID: 33705117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.