These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 33539864)
1. Safety of grafting acellular human corneal lenticule seeded with Wharton's Jelly-Derived Mesenchymal Stem Cells in an experimental animal model. Aghamollaei H; Hashemian H; Safabakhsh H; Halabian R; Baghersad M; Jadidi K Exp Eye Res; 2021 Apr; 205():108451. PubMed ID: 33539864 [TBL] [Abstract][Full Text] [Related]
2. Repair of Osteochondral Defects Using Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model. Liu S; Jia Y; Yuan M; Guo W; Huang J; Zhao B; Peng J; Xu W; Lu S; Guo Q Biomed Res Int; 2017; 2017():8760383. PubMed ID: 28261617 [TBL] [Abstract][Full Text] [Related]
3. Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. Liu S; Hou KD; Yuan M; Peng J; Zhang L; Sui X; Zhao B; Xu W; Wang A; Lu S; Guo Q J Biosci Bioeng; 2014 Feb; 117(2):229-235. PubMed ID: 23899897 [TBL] [Abstract][Full Text] [Related]
4. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Alio del Barrio JL; Chiesa M; Garagorri N; Garcia-Urquia N; Fernandez-Delgado J; Bataille L; Rodriguez A; Arnalich-Montiel F; Zarnowski T; Álvarez de Toledo JP; Alio JL; De Miguel MP Exp Eye Res; 2015 Mar; 132():91-100. PubMed ID: 25625506 [TBL] [Abstract][Full Text] [Related]
5. Human umbilical cord Wharton's jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Zhang Y; Liu S; Guo W; Wang M; Hao C; Gao S; Zhang X; Li X; Chen M; Jing X; Wang Z; Peng J; Lu S; Guo Q Osteoarthritis Cartilage; 2018 Jul; 26(7):954-965. PubMed ID: 29391278 [TBL] [Abstract][Full Text] [Related]
6. Combination of natural scaffolds and conditional medium to induce the differentiation of adipose-derived mesenchymal stem cells into keratocyte-like cells and its safety evaluation in the animal cornea. Ghiasi M; Hashemi M; Salimi A; Jadidi K; Tavallaie M; Aghamollaei H Tissue Cell; 2023 Jun; 82():102117. PubMed ID: 37267821 [TBL] [Abstract][Full Text] [Related]
7. Recellularization potential assessment of Wharton's Jelly-derived endothelial progenitor cells using a human fetal vascular tissue model. Constantinescu A; Andrei E; Iordache F; Constantinescu E; Maniu H In Vitro Cell Dev Biol Anim; 2014 Dec; 50(10):937-44. PubMed ID: 25124869 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Different Culture Conditions for Mesenchymal Stem Cells from Human Umbilical Cord Wharton’s Jelly for Stem Cell Therapy. Bao Y; Huang S; Zhao Z Turk J Haematol; 2020 Feb; 37(1):67-69. PubMed ID: 31718116 [No Abstract] [Full Text] [Related]
9. The effect of prior long-term recellularization with keratocytes of decellularized porcine corneas implanted in a rabbit anterior lamellar keratoplasty model. Fernández-Pérez J; Madden PW; Brady RT; Nowlan PF; Ahearne M PLoS One; 2021; 16(6):e0245406. PubMed ID: 34061862 [TBL] [Abstract][Full Text] [Related]
11. [In vitro evaluation of chondrocytes combined with Wharton's jelly of human umbilical cord oriented scaffold]. Lü H; Xu G; Gai Y; Chen L; Liu S; Zhao P; Lu S; Zhang L; Quanyi G; Yang J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Aug; 28(8):1017-22. PubMed ID: 25417319 [TBL] [Abstract][Full Text] [Related]
13. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells. Liau LL; Ruszymah BHI; Ng MH; Law JX Curr Res Transl Med; 2020 Jan; 68(1):5-16. PubMed ID: 31543433 [TBL] [Abstract][Full Text] [Related]
14. Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Ma L; Feng XY; Cui BL; Law F; Jiang XW; Yang LY; Xie QD; Huang TH Chin Med J (Engl); 2005 Dec; 118(23):1987-93. PubMed ID: 16336835 [TBL] [Abstract][Full Text] [Related]
15. Generation of a biomimetic human artificial cornea model using Wharton's jelly mesenchymal stem cells. Garzón I; Martín-Piedra MA; Alfonso-Rodríguez C; González-Andrades M; Carriel V; Martínez-Gómez C; Campos A; Alaminos M Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4073-83. PubMed ID: 24906855 [TBL] [Abstract][Full Text] [Related]
16. A Phase I Study to Evaluate Two Doses of Wharton's Jelly-Derived Mesenchymal Stromal Cells for the Treatment of De Novo High-Risk or Steroid-Refractory Acute Graft Versus Host Disease. Soder RP; Dawn B; Weiss ML; Dunavin N; Weir S; Mitchell J; Li M; Shune L; Singh AK; Ganguly S; Morrison M; Abdelhakim H; Godwin AK; Abhyankar S; McGuirk J Stem Cell Rev Rep; 2020 Oct; 16(5):979-991. PubMed ID: 32740891 [TBL] [Abstract][Full Text] [Related]
17. Increased Expression of Gil-Kulik P; Świstowska M; Kondracka A; Chomik P; Krzyżanowski A; Kwaśniewska A; Rahnama M; Kocki J Oxid Med Cell Longev; 2020; 2020():9084730. PubMed ID: 32322338 [TBL] [Abstract][Full Text] [Related]
18. MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Lim J; Razi ZR; Law J; Nawi AM; Idrus RB; Ng MH Cytotherapy; 2016 Dec; 18(12):1493-1502. PubMed ID: 27727016 [TBL] [Abstract][Full Text] [Related]
19. Regenerative potential of Wharton's jelly-derived mesenchymal stem cells: A new horizon of stem cell therapy. Abbaszadeh H; Ghorbani F; Derakhshani M; Movassaghpour AA; Yousefi M; Talebi M; Shamsasenjan K J Cell Physiol; 2020 Dec; 235(12):9230-9240. PubMed ID: 32557631 [TBL] [Abstract][Full Text] [Related]
20. Wharton's jelly-derived mesenchymal cells as a new source for the generation of microtissues for tissue engineering applications. Durand-Herrera D; Campos F; Jaimes-Parra BD; Sánchez-López JD; Fernández-Valadés R; Alaminos M; Campos A; Carriel V Histochem Cell Biol; 2018 Oct; 150(4):379-393. PubMed ID: 29931444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]