These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 33539894)
1. Engineering endogenous l-proline biosynthetic pathway to boost trans-4-hydroxy-l-proline production in Escherichia coli. Jiang L; Pang J; Yang L; Li W; Duan L; Zhang G; Luo Y J Biotechnol; 2021 Mar; 329():104-117. PubMed ID: 33539894 [TBL] [Abstract][Full Text] [Related]
2. Modular reconstruction and optimization of the trans-4-hydroxy-L-proline synthesis pathway in Escherichia coli. Zhang Z; Su W; Bao Y; Huang Q; Ye K; Liu P; Chu X Microb Cell Fact; 2022 Aug; 21(1):159. PubMed ID: 35953819 [TBL] [Abstract][Full Text] [Related]
3. Efficient production of trans-4-Hydroxy-l-proline from glucose by metabolic engineering of recombinant Escherichia coli. Zhang HL; Zhang C; Pei CH; Han MN; Xu ZD; Li CH; Li W Lett Appl Microbiol; 2018 May; 66(5):400-408. PubMed ID: 29432647 [TBL] [Abstract][Full Text] [Related]
4. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli. Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203 [TBL] [Abstract][Full Text] [Related]
6. Chassis engineering of Escherichia coli for trans-4-hydroxy-l-proline production. Chen X; Yi J; Song W; Liu J; Luo Q; Liu L Microb Biotechnol; 2021 Mar; 14(2):392-402. PubMed ID: 32396278 [TBL] [Abstract][Full Text] [Related]
7. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Cardenas J; Da Silva NA Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250 [TBL] [Abstract][Full Text] [Related]
8. Combining Protein and Metabolic Engineering Strategies for High-Level Production of O-Acetylhomoserine in Escherichia coli. Wei L; Wang Q; Xu N; Cheng J; Zhou W; Han G; Jiang H; Liu J; Ma Y ACS Synth Biol; 2019 May; 8(5):1153-1167. PubMed ID: 30973696 [TBL] [Abstract][Full Text] [Related]
9. Efficient production of trans-4-hydroxy-l-proline from glucose using a new trans-proline 4-hydroxylase in Escherichia coli. Wang XC; Liu J; Zhao J; Ni XM; Zheng P; Guo X; Sun CM; Sun JB; Ma YH J Biosci Bioeng; 2018 Oct; 126(4):470-477. PubMed ID: 29805115 [TBL] [Abstract][Full Text] [Related]
10. Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli. Soma Y; Yamaji T; Matsuda F; Hanai T J Biosci Bioeng; 2017 May; 123(5):625-633. PubMed ID: 28214243 [TBL] [Abstract][Full Text] [Related]
11. Pathway engineering of Escherichia coli for α-ketoglutaric acid production. Chen X; Dong X; Liu J; Luo Q; Liu L Biotechnol Bioeng; 2020 Sep; 117(9):2791-2801. PubMed ID: 32530489 [TBL] [Abstract][Full Text] [Related]
12. Multi-modular engineering for renewable production of isoprene via mevalonate pathway in Escherichia coli. Liu CL; Dong HG; Zhan J; Liu X; Yang Y J Appl Microbiol; 2019 Apr; 126(4):1128-1139. PubMed ID: 30656788 [TBL] [Abstract][Full Text] [Related]
13. Multiplex Design of the Metabolic Network for Production of l-Homoserine in Escherichia coli. Liu P; Zhang B; Yao ZH; Liu ZQ; Zheng YG Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32801175 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the production of L-proline in recombinant Lu J; Fu B; Zhu Z; Yan C; Guan F; Wang P; Yu P Prep Biochem Biotechnol; 2024 Jul; ():1-9. PubMed ID: 38984870 [TBL] [Abstract][Full Text] [Related]
15. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A. Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681 [TBL] [Abstract][Full Text] [Related]
16. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids. Kim S; Cheong S; Gonzalez R Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381 [TBL] [Abstract][Full Text] [Related]
17. Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability. Centeno-Leija S; Huerta-Beristain G; Giles-Gómez M; Bolivar F; Gosset G; Martinez A Antonie Van Leeuwenhoek; 2014 Apr; 105(4):687-96. PubMed ID: 24500003 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Zhang S; Yang W; Chen H; Liu B; Lin B; Tao Y Microb Cell Fact; 2019 Aug; 18(1):130. PubMed ID: 31387584 [TBL] [Abstract][Full Text] [Related]
19. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose. Luo ZW; Kim WJ; Lee SY ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230 [TBL] [Abstract][Full Text] [Related]
20. Reassessing acetyl-CoA supply and NADPH availability for mevalonate biosynthesis from glycerol in Escherichia coli. Wang Y; Zhou S; Li R; Liu Q; Shao X; Zhu L; Kang MK; Wei G; Kim SW; Wang C Biotechnol Bioeng; 2022 Oct; 119(10):2868-2877. PubMed ID: 35781874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]