These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 33539930)
1. Framework for the treatment and reporting of missing data in observational studies: The Treatment And Reporting of Missing data in Observational Studies framework. Lee KJ; Tilling KM; Cornish RP; Little RJA; Bell ML; Goetghebeur E; Hogan JW; Carpenter JR; J Clin Epidemiol; 2021 Jun; 134():79-88. PubMed ID: 33539930 [TBL] [Abstract][Full Text] [Related]
2. Gaps in the usage and reporting of multiple imputation for incomplete data: findings from a scoping review of observational studies addressing causal questions. Mainzer RM; Moreno-Betancur M; Nguyen CD; Simpson JA; Carlin JB; Lee KJ BMC Med Res Methodol; 2024 Sep; 24(1):193. PubMed ID: 39232661 [TBL] [Abstract][Full Text] [Related]
3. Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review. Mainzer R; Moreno-Betancur M; Nguyen C; Simpson J; Carlin J; Lee K BMJ Open; 2023 Feb; 13(2):e065576. PubMed ID: 36725096 [TBL] [Abstract][Full Text] [Related]
5. The rise of multiple imputation: a review of the reporting and implementation of the method in medical research. Hayati Rezvan P; Lee KJ; Simpson JA BMC Med Res Methodol; 2015 Apr; 15():30. PubMed ID: 25880850 [TBL] [Abstract][Full Text] [Related]
6. STRengthening analytical thinking for observational studies: the STRATOS initiative. Sauerbrei W; Abrahamowicz M; Altman DG; le Cessie S; Carpenter J; Stat Med; 2014 Dec; 33(30):5413-32. PubMed ID: 25074480 [TBL] [Abstract][Full Text] [Related]
7. Outcome-sensitive multiple imputation: a simulation study. Kontopantelis E; White IR; Sperrin M; Buchan I BMC Med Res Methodol; 2017 Jan; 17(1):2. PubMed ID: 28068910 [TBL] [Abstract][Full Text] [Related]
8. A review of the handling of missing longitudinal outcome data in clinical trials. Powney M; Williamson P; Kirkham J; Kolamunnage-Dona R Trials; 2014 Jun; 15():237. PubMed ID: 24947664 [TBL] [Abstract][Full Text] [Related]
9. Handling missing data in patient-level cost-effectiveness analysis alongside randomised clinical trials. Manca A; Palmer S Appl Health Econ Health Policy; 2005; 4(2):65-75. PubMed ID: 16162026 [TBL] [Abstract][Full Text] [Related]
10. Guidelines for multiple imputations in repeated measurements with time-dependent covariates: a case study. Tan FES; Jolani S; Verbeek H J Clin Epidemiol; 2018 Oct; 102():107-114. PubMed ID: 29964148 [TBL] [Abstract][Full Text] [Related]
11. Handling Missing Data in Health Economics and Outcomes Research (HEOR): A Systematic Review and Practical Recommendations. Mukherjee K; Gunsoy NB; Kristy RM; Cappelleri JC; Roydhouse J; Stephenson JJ; Vanness DJ; Ramachandran S; Onwudiwe NC; Pentakota SR; Karcher H; Di Tanna GL Pharmacoeconomics; 2023 Dec; 41(12):1589-1601. PubMed ID: 37490207 [TBL] [Abstract][Full Text] [Related]
12. The reporting and handling of missing data in longitudinal studies of older adults is suboptimal: a methodological survey of geriatric journals. Okpara C; Edokwe C; Ioannidis G; Papaioannou A; Adachi JD; Thabane L BMC Med Res Methodol; 2022 Apr; 22(1):122. PubMed ID: 35473665 [TBL] [Abstract][Full Text] [Related]
13. Hidden analyses: a review of reporting practice and recommendations for more transparent reporting of initial data analyses. Huebner M; Vach W; le Cessie S; Schmidt CO; Lusa L; BMC Med Res Methodol; 2020 Mar; 20(1):61. PubMed ID: 32169053 [TBL] [Abstract][Full Text] [Related]
14. Using observational study data as an external control group for a clinical trial: an empirical comparison of methods to account for longitudinal missing data. Norvang V; Haavardsholm EA; Tedeschi SK; Lyu H; Sexton J; Mjaavatten MD; Kvien TK; Solomon DH; Yoshida K BMC Med Res Methodol; 2022 May; 22(1):152. PubMed ID: 35643430 [TBL] [Abstract][Full Text] [Related]
15. Attrition in longitudinal studies. How to deal with missing data. Twisk J; de Vente W J Clin Epidemiol; 2002 Apr; 55(4):329-37. PubMed ID: 11927199 [TBL] [Abstract][Full Text] [Related]
16. Imputation and missing indicators for handling missing data in the development and deployment of clinical prediction models: A simulation study. Sisk R; Sperrin M; Peek N; van Smeden M; Martin GP Stat Methods Med Res; 2023 Aug; 32(8):1461-1477. PubMed ID: 37105540 [No Abstract] [Full Text] [Related]
17. Methods for handling missing data in serially sampled sputum specimens for mycobacterial culture conversion calculation. Malatesta S; Weir IR; Weber SE; Bouton TC; Carney T; Theron D; Myers B; Horsburgh CR; Warren RM; Jacobson KR; White LF BMC Med Res Methodol; 2022 Nov; 22(1):297. PubMed ID: 36402979 [TBL] [Abstract][Full Text] [Related]
18. Missing data in longitudinal studies: cross-sectional multiple imputation provides similar estimates to full-information maximum likelihood. Ferro MA Ann Epidemiol; 2014 Jan; 24(1):75-7. PubMed ID: 24210708 [TBL] [Abstract][Full Text] [Related]
19. Multiple imputation for missing data. Patrician PA Res Nurs Health; 2002 Feb; 25(1):76-84. PubMed ID: 11807922 [TBL] [Abstract][Full Text] [Related]
20. A comparison of different methods to handle missing data in the context of propensity score analysis. Choi J; Dekkers OM; le Cessie S Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]