These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 33540043)
1. Deterioration of nuclear morphology and architecture: A hallmark of senescence and aging. Pathak RU; Soujanya M; Mishra RK Ageing Res Rev; 2021 May; 67():101264. PubMed ID: 33540043 [TBL] [Abstract][Full Text] [Related]
2. Alterations to nuclear architecture and genome behavior in senescent cells. Mehta IS; Figgitt M; Clements CS; Kill IR; Bridger JM Ann N Y Acad Sci; 2007 Apr; 1100():250-63. PubMed ID: 17460187 [TBL] [Abstract][Full Text] [Related]
3. Aging dependent effect of nuclear tau. Gil L; Federico C; Pinedo F; Bruno F; Rebolledo AB; Montoya JJ; Olazabal IM; Ferrer I; Saccone S Brain Res; 2017 Dec; 1677():129-137. PubMed ID: 28974363 [TBL] [Abstract][Full Text] [Related]
4. Towards delineating the chain of events that cause premature senescence in the accelerated aging syndrome Hutchinson-Gilford progeria (HGPS). Dreesen O Biochem Soc Trans; 2020 Jun; 48(3):981-991. PubMed ID: 32539085 [TBL] [Abstract][Full Text] [Related]
5. Form follows function: Nuclear morphology as a quantifiable predictor of cellular senescence. Belhadj J; Surina S; Hengstschläger M; Lomakin AJ Aging Cell; 2023 Dec; 22(12):e14012. PubMed ID: 37845808 [TBL] [Abstract][Full Text] [Related]
6. Chromosome organisation during ageing and senescence. Chandra T; Kirschner K Curr Opin Cell Biol; 2016 Jun; 40():161-167. PubMed ID: 27101466 [TBL] [Abstract][Full Text] [Related]
7. Enhanced nuclear protein export in premature aging and rescue of the progeria phenotype by modulation of CRM1 activity. García-Aguirre I; Alamillo-Iniesta A; Rodríguez-Pérez R; Vélez-Aguilera G; Amaro-Encarnación E; Jiménez-Gutiérrez E; Vásquez-Limeta A; Samuel Laredo-Cisneros M; Morales-Lázaro SL; Tiburcio-Félix R; Ortega A; Magaña JJ; Winder SJ; Cisneros B Aging Cell; 2019 Oct; 18(5):e13002. PubMed ID: 31305018 [TBL] [Abstract][Full Text] [Related]
8. Loss of Dystroglycan Drives Cellular Senescence via Defective Mitosis-Mediated Genomic Instability. Jimenez-Gutierrez GE; Mondragon-Gonzalez R; Soto-Ponce LA; Gómez-Monsiváis WL; García-Aguirre I; Pacheco-Rivera RA; Suárez-Sánchez R; Brancaccio A; Magaña JJ; C R Perlingeiro R; Cisneros B Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32674290 [TBL] [Abstract][Full Text] [Related]
9. Lamin B receptor: role on chromatin structure, cellular senescence and possibly aging. Castro-Obregón S Biochem J; 2020 Jul; 477(14):2715-2720. PubMed ID: 32726434 [TBL] [Abstract][Full Text] [Related]
10. Premature aging syndromes: From patients to mechanism. Foo MXR; Ong PF; Dreesen O J Dermatol Sci; 2019 Nov; 96(2):58-65. PubMed ID: 31727429 [TBL] [Abstract][Full Text] [Related]
11. Quantitative 3D Analysis of Nuclear Morphology and Heterochromatin Organization from Whole-Mount Plant Tissue Using NucleusJ. Desset S; Poulet A; Tatout C Methods Mol Biol; 2018; 1675():615-632. PubMed ID: 29052214 [TBL] [Abstract][Full Text] [Related]
12. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Adams PD Gene; 2007 Aug; 397(1-2):84-93. PubMed ID: 17544228 [TBL] [Abstract][Full Text] [Related]
13. Quantitative identification of senescent cells in aging and disease. Biran A; Zada L; Abou Karam P; Vadai E; Roitman L; Ovadya Y; Porat Z; Krizhanovsky V Aging Cell; 2017 Aug; 16(4):661-671. PubMed ID: 28455874 [TBL] [Abstract][Full Text] [Related]
14. Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression. van Steensel B; Belmont AS Cell; 2017 May; 169(5):780-791. PubMed ID: 28525751 [TBL] [Abstract][Full Text] [Related]
15. Confocal microscope analysis and tridimensional reconstruction of papillary thyroid carcinoma nuclei. Papotti M; Manazza AD; Chiarle R; Bussolati G Virchows Arch; 2004 Apr; 444(4):350-5. PubMed ID: 14758551 [TBL] [Abstract][Full Text] [Related]
16. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. Raz V; Vermolen BJ; Garini Y; Onderwater JJ; Mommaas-Kienhuis MA; Koster AJ; Young IT; Tanke H; Dirks RW J Cell Sci; 2008 Dec; 121(Pt 24):4018-28. PubMed ID: 19056671 [TBL] [Abstract][Full Text] [Related]
17. Current Methods and Pipelines for Image-Based Quantitation of Nuclear Shape and Nuclear Envelope Abnormalities. Janssen AFJ; Breusegem SY; Larrieu D Cells; 2022 Jan; 11(3):. PubMed ID: 35159153 [TBL] [Abstract][Full Text] [Related]
18. Anti-senescent drug screening by deep learning-based morphology senescence scoring. Kusumoto D; Seki T; Sawada H; Kunitomi A; Katsuki T; Kimura M; Ito S; Komuro J; Hashimoto H; Fukuda K; Yuasa S Nat Commun; 2021 Jan; 12(1):257. PubMed ID: 33431893 [TBL] [Abstract][Full Text] [Related]
19. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Ogrodnik M; Salmonowicz H; Gladyshev VN Aging Cell; 2019 Feb; 18(1):e12841. PubMed ID: 30346102 [TBL] [Abstract][Full Text] [Related]
20. Aging of the cells: Insight into cellular senescence and detection Methods. Mohamad Kamal NS; Safuan S; Shamsuddin S; Foroozandeh P Eur J Cell Biol; 2020 Aug; 99(6):151108. PubMed ID: 32800277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]