BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33540121)

  • 1. Bio-guided isolation of leishmanicidal and trypanocidal constituents from Pituranthos battandieri aerial parts.
    Mennai I; Sifaoui I; Esseid C; López-Arencibia A; Reyes-Batlle M; Benayache F; Benayache S; Bazzocchi IL; Lorenzo-Morales J; Piñero JE; Jiménez IA
    Parasitol Int; 2021 Jun; 82():102300. PubMed ID: 33540121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the antiprotozoal activity of Pulicaria inuloides extracts, an Algerian medicinal plant: leishmanicidal bioguided fractionation.
    Fadel H; Sifaoui I; López-Arencibia A; Reyes-Batlle M; Hajaji S; Chiboub O; Jiménez IA; Bazzocchi IL; Lorenzo-Morales J; Benayache S; Piñero JE
    Parasitol Res; 2018 Feb; 117(2):531-537. PubMed ID: 29306999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual and combined antiparasitic effect of six plant metabolites against Leishmania amazonensis and Trypanosoma cruzi.
    Sandjo LP; de Moraes MH; Kuete V; Kamdoum BC; Ngadjui BT; Steindel M
    Bioorg Med Chem Lett; 2016 Apr; 26(7):1772-5. PubMed ID: 26906638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia.
    Beer MF; Frank FM; Germán Elso O; Ernesto Bivona A; Cerny N; Giberti G; Luis Malchiodi E; Susana Martino V; Alonso MR; Patricia Sülsen V; Cazorla SI
    Pharm Biol; 2016 Oct; 54(10):2188-95. PubMed ID: 26983579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiprotozoal investigation of 20 plant metabolites on Trypanosoma cruzi and Leishmania amazonensis amastigotes. Atalantoflavone alters the mitochondrial membrane potential.
    Lemos da Silva LA; Höehr de Moraes M; Scotti MT; Scotti L; de Jesus Souza R; Nantchouang Ouete JL; Biavatti MW; Steindel M; Sandjo LP
    Parasitology; 2019 Jun; 146(7):849-856. PubMed ID: 30755289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactivity-guided isolation of trypanocidal coumarins and dihydro-pyranochromones from selected Apiaceae plant species.
    Krishnan SR; Skiba A; Luca SV; Marcourt L; Wolfender JL; Skalicka-Woźniak K; Gertsch J
    Phytochemistry; 2023 Sep; 213():113770. PubMed ID: 37331573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiparasitic activities of two sesquiterpenic lactones isolated from Acanthospermum hispidum D.C.
    Ganfon H; Bero J; Tchinda AT; Gbaguidi F; Gbenou J; Moudachirou M; Frédérich M; Quetin-Leclercq J
    J Ethnopharmacol; 2012 May; 141(1):411-7. PubMed ID: 22440261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Germacranolide-type sesquiterpene lactones from Smallanthus sonchifolius with promising activity against Leishmania mexicana and Trypanosoma cruzi.
    Ulloa JL; Spina R; Casasco A; Petray PB; Martino V; Sosa MA; Frank FM; Muschietti LV
    Parasit Vectors; 2017 Nov; 10(1):567. PubMed ID: 29132413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of leishmanicidal and trypanocidal activities of phenolic compounds from Calea uniflora Less.
    Lima TC; Souza RJ; Santos AD; Moraes MH; Biondo NE; Barison A; Steindel M; Biavatti MW
    Nat Prod Res; 2016; 30(5):551-7. PubMed ID: 25880257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiprotozoal activity of Achillea ptarmica (Asteraceae) and its main alkamide constituents.
    Althaus JB; Kaiser M; Brun R; Schmidt TJ
    Molecules; 2014 May; 19(5):6428-38. PubMed ID: 24853616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and in vitro evaluation of Ca
    Pollo LAE; de Moraes MH; Cisilotto J; Creczynski-Pasa TB; Biavatti MW; Steindel M; Sandjo LP
    Parasitol Int; 2017 Dec; 66(6):789-797. PubMed ID: 28801098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sesquiterpenoids and flavonoids from Inula viscosa induce programmed cell death in kinetoplastids.
    Zeouk I; Sifaoui I; López-Arencibia A; Reyes-Batlle M; Bethencourt-Estrella CJ; Bazzocchi IL; Bekhti K; Lorenzo-Morales J; Jiménez IA; Piñero JE
    Biomed Pharmacother; 2020 Oct; 130():110518. PubMed ID: 32674017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypanocidal and leishmanicidal activities of sesquiterpene lactones from Ambrosia tenuifolia Sprengel (Asteraceae).
    Sülsen VP; Frank FM; Cazorla SI; Anesini CA; Malchiodi EL; Freixa B; Vila R; Muschietti LV; Martino VS
    Antimicrob Agents Chemother; 2008 Jul; 52(7):2415-9. PubMed ID: 18443111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bioactive biflavonoid from Campnosperma panamense.
    Weniger B; Vonthron-Sénécheau C; Arango GJ; Kaiser M; Brun R; Anton R
    Fitoterapia; 2004 Dec; 75(7-8):764-7. PubMed ID: 15567260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel prenyloxy chalcones as potential leishmanicidal and trypanocidal agents: Design, synthesis and evaluation.
    Espinoza-Hicks JC; Chacón-Vargas KF; Hernández-Rivera JL; Nogueda-Torres B; Tamariz J; Sánchez-Torres LE; Camacho-Dávila A
    Eur J Med Chem; 2019 Apr; 167():402-413. PubMed ID: 30784876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential effects of new synthetic drugs against Leishmania amazonensis and Trypanosoma cruzi.
    Canto-Cavalheiro MM; Echevarria A; Araujo CA; Bravo MF; Santos LH; Jansen AM; Leon LL
    Microbios; 1997; 90(362):51-60. PubMed ID: 9301071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Constituents from Aerial Parts of Baccharis sphenophylla and Effects against Intracellular Forms of Trypanosoma cruzi.
    Silva ML; Costa-Silva TA; Antar GM; Tempone AG; Lago JHG
    Chem Biodivers; 2021 Oct; 18(10):e2100466. PubMed ID: 34263530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of 4-(4-chlorophenyl)thiazole compounds: in silico and in vitro evaluations as leishmanicidal and trypanocidal agents.
    Cruz Filho IJD; Oliveira JF; Santos ACS; Pereira VRA; Lima MCA
    An Acad Bras Cienc; 2023; 95(1):e20220538. PubMed ID: 37132749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of leishmanicidal and trypanocidal activities of aliphatic diamine derivatives.
    Yamanaka CN; Giordani RB; Rezende CO; Eger I; Kessler RL; Tonini ML; de Moraes MH; Araújo DP; Zuanazzi JA; de Almeida MV; Steindel M
    Chem Biol Drug Des; 2013 Dec; 82(6):697-704. PubMed ID: 23865595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive-guided identification of labdane diterpenoids from aerial parts of Aristeguietia glutinosa as anti-Trypanosoma cruzi agents.
    Varela J; Lavaggi ML; Cabrera M; Rodríguez A; Miño P; Chiriboga X; Cerecetto H; González M
    Nat Prod Commun; 2012 Sep; 7(9):1139-42. PubMed ID: 23074890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.