These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 33540509)
1. Transformation of Salicylic Acid and Its Distribution in Tea Plants ( Li J; Xiao Y; Fan Q; Liao Y; Wang X; Fu X; Gu D; Chen Y; Zhou B; Tang J; Zeng L Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33540509 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional Analysis of Tea Plants ( Liu N; Wang Y; Li K; Li C; Liu B; Zhao L; Zhang X; Qu F; Gao L; Xia T; Wang P J Agric Food Chem; 2023 Feb; 71(5):2377-2389. PubMed ID: 36695193 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of Gallic Acid and Its Distributions in Tea ( Zhou X; Zeng L; Chen Y; Wang X; Liao Y; Xiao Y; Fu X; Yang Z Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784431 [TBL] [Abstract][Full Text] [Related]
4. Biochemical Pathways of Salicylic Acid Derived from l-Phenylalanine in Plants with Different Basal SA Levels. Zou Z; Fan Q; Zhou X; Fu X; Jia Y; Li H; Liao Y J Agric Food Chem; 2024 Feb; 72(6):2898-2910. PubMed ID: 38197566 [TBL] [Abstract][Full Text] [Related]
5. 2,4-Dihydroxybenzoic Acid, a Novel SA Derivative, Controls Plant Immunity via UGT95B17-Mediated Glucosylation: A Case Study in Camellia Sinensis. Lu M; Zhao Y; Feng Y; Tang X; Zhao W; Yu K; Pan Y; Wang Q; Cui J; Zhang M; Jin J; Wang J; Zhao M; Schwab W; Song C Adv Sci (Weinh); 2024 Feb; 11(7):e2307051. PubMed ID: 38063804 [TBL] [Abstract][Full Text] [Related]
6. Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis. Hu Y; Zhang M; Lu M; Wu Y; Jing T; Zhao M; Zhao Y; Feng Y; Wang J; Gao T; Zhou Z; Wu B; Jiang H; Wan X; Schwab W; Song C Plant Physiol; 2022 Mar; 188(3):1507-1520. PubMed ID: 34893910 [TBL] [Abstract][Full Text] [Related]
7. Strategies for studying Liao Y; Fu X; Zeng L; Yang Z Crit Rev Food Sci Nutr; 2022; 62(2):429-442. PubMed ID: 32914643 [TBL] [Abstract][Full Text] [Related]
8. Alternative Pathway to the Formation of Zeng L; Wang X; Tan H; Liao Y; Xu P; Kang M; Dong F; Yang Z J Agric Food Chem; 2020 Mar; 68(11):3415-3424. PubMed ID: 32078319 [No Abstract] [Full Text] [Related]
9. Differential accumulation of specialized metabolite l-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves. Cheng S; Fu X; Liao Y; Xu X; Zeng L; Tang J; Li J; Lai J; Yang Z Food Chem; 2019 Mar; 276():93-100. PubMed ID: 30409668 [TBL] [Abstract][Full Text] [Related]
10. Integrative Analysis of Metabolomics and Transcriptomics Reveals Molecular Mechanisms of Anthocyanin Metabolism in the Zikui Tea Plant ( Cai J; Lv L; Zeng X; Zhang F; Chen Y; Tian W; Li J; Li X; Li Y Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563169 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning, functional analysis of three cinnamyl alcohol dehydrogenase (CAD) genes in the leaves of tea plant, Camellia sinensis. Deng WW; Zhang M; Wu JQ; Jiang ZZ; Tang L; Li YY; Wei CL; Jiang CJ; Wan XC J Plant Physiol; 2013 Feb; 170(3):272-82. PubMed ID: 23228629 [TBL] [Abstract][Full Text] [Related]
12. Micromorphological studies of the leaf and stem of Camellia sinensis (L.) Kuntze with reference to their taxonomic significance. Das P; Chettri V; Ghosh S; Ghosh C Microsc Res Tech; 2023 Apr; 86(4):465-472. PubMed ID: 36582166 [TBL] [Abstract][Full Text] [Related]
13. Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from Camellia sinensis, Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea. Deng WW; Wang R; Yang T; Jiang L; Zhang ZZ J Agric Food Chem; 2017 Dec; 65(50):11036-11045. PubMed ID: 29160698 [TBL] [Abstract][Full Text] [Related]
14. Defensive Responses of Tea Plants ( Zhao X; Chen S; Wang S; Shan W; Wang X; Lin Y; Su F; Yang Z; Yu X Front Plant Sci; 2019; 10():1705. PubMed ID: 32010173 [TBL] [Abstract][Full Text] [Related]
15. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea. Fu X; Liao Y; Cheng S; Xu X; Grierson D; Yang Z Plant Biotechnol J; 2021 Jan; 19(1):98-108. PubMed ID: 32643247 [TBL] [Abstract][Full Text] [Related]
16. Absorption and subcellular distribution of cadmium in tea plant (Camellia sinensis cv. "Shuchazao"). Cao DJ; Yang X; Geng G; Wan XC; Ma RX; Zhang Q; Liang YG Environ Sci Pollut Res Int; 2018 Jun; 25(16):15357-15367. PubMed ID: 29564701 [TBL] [Abstract][Full Text] [Related]
17. A Comparative Metabolomic Analysis Reveals Difference Manufacture Suitability in "Yinghong 9" and "Huangyu" Teas ( Mei X; Lin C; Wan S; Chen B; Wu H; Zhang L Front Plant Sci; 2021; 12():767724. PubMed ID: 34970283 [TBL] [Abstract][Full Text] [Related]
18. Identification of a Novel Gene Encoding the Specialized Alanine Decarboxylase in Tea ( Bai P; Wei K; Wang L; Zhang F; Ruan L; Li H; Wu L; Cheng H Molecules; 2019 Feb; 24(3):. PubMed ID: 30717241 [TBL] [Abstract][Full Text] [Related]
19. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Zeng L; Zhou Y; Fu X; Mei X; Cheng S; Gui J; Dong F; Tang J; Ma S; Yang Z Food Chem; 2017 Dec; 237():488-498. PubMed ID: 28764024 [TBL] [Abstract][Full Text] [Related]
20. First Report of Yang D; Yao J; Wang B; Zheng J; Cao C; Huang D Plant Dis; 2023 Sep; ():. PubMed ID: 37700480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]