These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33540534)

  • 41. Electrospun PS/PAN fibers with improved mechanical property for removal of oil from water.
    Li P; Qiao Y; Zhao L; Yao D; Sun H; Hou Y; Li S; Li Q
    Mar Pollut Bull; 2015 Apr; 93(1-2):75-80. PubMed ID: 25752538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil.
    Duan B; Gao H; He M; Zhang L
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19933-42. PubMed ID: 25347002
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oil sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning electron microscopy.
    Choi HM; Moreau JP
    Microsc Res Tech; 1993 Aug; 25(5-6):447-55. PubMed ID: 8400439
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Study on essential oil separation from Forsythia suspensa oil-bearing water body based on vapor permeation membrane separation technology].
    Zhang Q; Zhu HX; Tang ZS; Pan YL; Li B; Fu TM; Yao WW; Liu HB; Pan LM
    Zhongguo Zhong Yao Za Zhi; 2018 Apr; 43(8):1642-1648. PubMed ID: 29751711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Waste packaging polymeric foam for oil-water separation: An environmental remediation.
    Patil CS; Patil VR; Anbhule SN; Khilare CJ; Kolekar GB; Gore AH
    Data Brief; 2018 Aug; 19():86-92. PubMed ID: 29892621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Governing factors for motor oil removal from water with different sorption materials.
    Rajaković-Ognjanović V; Aleksić G; Rajaković Lj
    J Hazard Mater; 2008 Jun; 154(1-3):558-63. PubMed ID: 18060689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PVA-PDMS-Stearic acid composite nanofibrous mats with improved mechanical behavior for selective filtering applications.
    Perween S; Khan Z; Singh S; Ranjan A
    Sci Rep; 2018 Oct; 8(1):16038. PubMed ID: 30375465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.
    Long M; Peng S; Deng W; Yang X; Miao K; Wen N; Miao X; Deng W
    J Colloid Interface Sci; 2017 Dec; 508():18-27. PubMed ID: 28818653
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of biomass sorbents for oil removal from gas station runoff.
    Khan E; Virojnagud W; Ratpukdi T
    Chemosphere; 2004 Nov; 57(7):681-9. PubMed ID: 15488931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume.
    Liu HB; Yang B; Xue ND
    J Hazard Mater; 2016 Nov; 318():425-432. PubMed ID: 27450334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil.
    Guix M; Orozco J; García M; Gao W; Sattayasamitsathit S; Merkoçi A; Escarpa A; Wang J
    ACS Nano; 2012 May; 6(5):4445-51. PubMed ID: 22480219
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup.
    Wu D; Fang L; Qin Y; Wu W; Mao C; Zhu H
    Mar Pollut Bull; 2014 Jul; 84(1-2):263-7. PubMed ID: 24856092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Study on structure and wetting characteristic of cattail fibers as natural materials for oil sorption.
    Cao S; Dong T; Xu G; Wang F
    Environ Technol; 2016 Dec; 37(24):3193-9. PubMed ID: 27148643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effective cleanup of oil contamination on bio-inspired superhydrophobic surface.
    Zhou Q; Wang L; Xu Q; Zhao Y
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21321-21328. PubMed ID: 31124064
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simple fabrication of zeolitic imidazolate framework ZIF-8/polymer composite beads by phase inversion method for efficient oil sorption.
    Abbasi Z; Shamsaei E; Fang XY; Ladewig B; Wang H
    J Colloid Interface Sci; 2017 May; 493():150-161. PubMed ID: 28088567
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings.
    Yaghi N; Hartikainen H
    Chemosphere; 2013 Nov; 93(9):1879-86. PubMed ID: 23866174
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model.
    Zhang Q; Karadimitriou NK; Hassanizadeh SM; Kleingeld PJ; Imhof A
    J Colloid Interface Sci; 2013 Jul; 401():141-7. PubMed ID: 23598251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation.
    Ge J; Ye YD; Yao HB; Zhu X; Wang X; Wu L; Wang JL; Ding H; Yong N; He LH; Yu SH
    Angew Chem Int Ed Engl; 2014 Apr; 53(14):3612-6. PubMed ID: 24591265
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of polydimethylsiloxane-microdiamond composite materials for application as sorptive devices.
    Hasan CK; Wirth HJ; Gooley A; Lewis TW; Shellie RA; Nesterenko PN; Paull B
    J Chromatogr A; 2020 Feb; 1613():460669. PubMed ID: 31732157
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil-water separation.
    Huang K; Rowe P; Chi C; Sreepal V; Bohn T; Zhou KG; Su Y; Prestat E; Pillai PB; Cherian CT; Michaelides A; Nair RR
    Nat Commun; 2020 Feb; 11(1):1097. PubMed ID: 32107369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.